Update dependency numpy to v2.2.5 #86

Merged
renovate_bot merged 1 commit from renovate/numpy-2.x into main 2025-05-03 16:59:26 -07:00
Collaborator

This PR contains the following updates:

Package Type Update Change
numpy (changelog) project.dependencies patch ==2.2.3 -> ==2.2.5

Release Notes

numpy/numpy (numpy)

v2.2.5: (Apr 19, 2025)

Compare Source

NumPy 2.2.5 Release Notes

NumPy 2.2.5 is a patch release that fixes bugs found after the 2.2.4
release. It has a large number of typing fixes/improvements as well as
the normal bug fixes and some CI maintenance.

This release supports Python versions 3.10-3.13.

Contributors

A total of 7 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Charles Harris
  • Joren Hammudoglu
  • Baskar Gopinath +
  • Nathan Goldbaum
  • Nicholas Christensen +
  • Sayed Adel
  • karl +

Pull requests merged

A total of 19 pull requests were merged for this release.

  • #​28545: MAINT: Prepare 2.2.x for further development
  • #​28582: BUG: Fix return type of NpyIter_GetIterNext in Cython declarations
  • #​28583: BUG: avoid deadlocks with C++ shared mutex in dispatch cache
  • #​28585: TYP: fix typing errors in _core.strings
  • #​28631: MAINT, CI: Update Ubuntu to 22.04 in azure-pipelines
  • #​28632: BUG: Set writeable flag for writeable dlpacks.
  • #​28633: BUG: Fix crackfortran parsing error when a division occurs within...
  • #​28650: TYP: fix ndarray.tolist() and .item() for unknown dtype
  • #​28654: BUG: fix deepcopying StringDType arrays (#​28643)
  • #​28661: TYP: Accept objects that write() to str in savetxt
  • #​28663: CI: Replace QEMU armhf with native (32-bit compatibility mode)
  • #​28682: SIMD: Resolve Highway QSort symbol linking error on aarch32/ASIMD
  • #​28683: TYP: add missing "b1" literals for dtype[bool]
  • #​28705: TYP: Fix false rejection of NDArray[object_].__abs__()
  • #​28706: TYP: Fix inconsistent NDArray[float64].__[r]truediv__ return...
  • #​28723: TYP: fix string-like ndarray rich comparison operators
  • #​28758: TYP: some [arg]partition fixes
  • #​28772: TYP: fix incorrect random.Generator.integers return type
  • #​28774: TYP: fix count_nonzero signature

Checksums

MD5
3a5d0889d6d7951f44bc6f7a03fa30c6  numpy-2.2.5-cp310-cp310-macosx_10_9_x86_64.whl
bcf9f4e768b070e17b2635f422a6e27d  numpy-2.2.5-cp310-cp310-macosx_11_0_arm64.whl
e82c8fa47a65bb5c2c83295f549dab12  numpy-2.2.5-cp310-cp310-macosx_14_0_arm64.whl
a5511a995c0f79a8b9a81f2b50e9f692  numpy-2.2.5-cp310-cp310-macosx_14_0_x86_64.whl
72bfc1f98238a8e4ba08999e61111e0e  numpy-2.2.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
146c83a5b8099d8d2607392b2ef7fedf  numpy-2.2.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
6ebdc80b54b008a10575e5d7bbb613f5  numpy-2.2.5-cp310-cp310-musllinux_1_2_aarch64.whl
97efde6443da8f9280a5fc2614a087e5  numpy-2.2.5-cp310-cp310-musllinux_1_2_x86_64.whl
c143f352206cec535b41b6b1d34c5898  numpy-2.2.5-cp310-cp310-win32.whl
0b17fbbf584785f675f1c5b24a00ff93  numpy-2.2.5-cp310-cp310-win_amd64.whl
58532622d7eff69a3c71c1ae89dea070  numpy-2.2.5-cp311-cp311-macosx_10_9_x86_64.whl
0d002c733bb02debe0b15de5ba872d1e  numpy-2.2.5-cp311-cp311-macosx_11_0_arm64.whl
ff0c736c60be96506806061ace2251a1  numpy-2.2.5-cp311-cp311-macosx_14_0_arm64.whl
4febdec973c4405fd08ef35e0c130de1  numpy-2.2.5-cp311-cp311-macosx_14_0_x86_64.whl
0bf4e457c612e565420e135458e70fe0  numpy-2.2.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a43b608ad15ebdc0960611497205d598  numpy-2.2.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
7b4b1afd412149a9af7c25d7346fade8  numpy-2.2.5-cp311-cp311-musllinux_1_2_aarch64.whl
a1e70be013820f92dbfd4796fc4044bb  numpy-2.2.5-cp311-cp311-musllinux_1_2_x86_64.whl
73344e05a6fec0b38183363b4a026252  numpy-2.2.5-cp311-cp311-win32.whl
b7d5fdd23057c58d15c84eef6bfedb55  numpy-2.2.5-cp311-cp311-win_amd64.whl
801b11bb546aac2d92d7b3d5d6c90e86  numpy-2.2.5-cp312-cp312-macosx_10_13_x86_64.whl
68dc4298cad9405ad30cfb723be4ae48  numpy-2.2.5-cp312-cp312-macosx_11_0_arm64.whl
c31c872e0fa8df5ed7f91882621a925f  numpy-2.2.5-cp312-cp312-macosx_14_0_arm64.whl
179dfa545c32c44b77cf8db3b973785f  numpy-2.2.5-cp312-cp312-macosx_14_0_x86_64.whl
4562513ff2f1e3f31d66b8e435000141  numpy-2.2.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
c80a2d8aab1a4d6a66f3fca2f0744744  numpy-2.2.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e363e0d8c116522d55b0ddd0cbf2de67  numpy-2.2.5-cp312-cp312-musllinux_1_2_aarch64.whl
d31d443270c76b7238ece2f87b048d21  numpy-2.2.5-cp312-cp312-musllinux_1_2_x86_64.whl
bf469fe048fa4ed75a5d8725297e283a  numpy-2.2.5-cp312-cp312-win32.whl
069b832aa15b6a815497135e7fa8cae8  numpy-2.2.5-cp312-cp312-win_amd64.whl
b2cf059c831cbcfdb4044613a1e5bc8d  numpy-2.2.5-cp313-cp313-macosx_10_13_x86_64.whl
70bcb93e55ff0f6602636602e0834607  numpy-2.2.5-cp313-cp313-macosx_11_0_arm64.whl
00c4938d67fd5b658ad92ac26fbe9cab  numpy-2.2.5-cp313-cp313-macosx_14_0_arm64.whl
0ca38aa51874b9252a2c9d85f81dcd07  numpy-2.2.5-cp313-cp313-macosx_14_0_x86_64.whl
6062cf707b8bc07a1600af0991a0a88e  numpy-2.2.5-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
62c1cf7de0327546f3a1e3852de640d3  numpy-2.2.5-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
ab3ad3390396552f76160139cc528784  numpy-2.2.5-cp313-cp313-musllinux_1_2_aarch64.whl
d258ba55c9a3936fa0c113cac8bbc0cc  numpy-2.2.5-cp313-cp313-musllinux_1_2_x86_64.whl
59bb7e1acb81fc4a02c3b791e110f01e  numpy-2.2.5-cp313-cp313-win32.whl
2e5728a9e5c6405d3a22138e4dd7019f  numpy-2.2.5-cp313-cp313-win_amd64.whl
d315521ec7275d0341787f2450e57e55  numpy-2.2.5-cp313-cp313t-macosx_10_13_x86_64.whl
17018c7c259ae81cf2ca4f58523d7d1c  numpy-2.2.5-cp313-cp313t-macosx_11_0_arm64.whl
ef6fd6a9c6a07db004a272b82f0ea710  numpy-2.2.5-cp313-cp313t-macosx_14_0_arm64.whl
07b2baf70b84b44ca6924794d9c7e431  numpy-2.2.5-cp313-cp313t-macosx_14_0_x86_64.whl
a2fb1ed562d2b6da091d980c7486d113  numpy-2.2.5-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
22fa9137283f463436d7b20a220071cd  numpy-2.2.5-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b0ae924e4834155eb5ac159ae611c292  numpy-2.2.5-cp313-cp313t-musllinux_1_2_aarch64.whl
c7a8351484f2df9a499c68f1ac73121c  numpy-2.2.5-cp313-cp313t-musllinux_1_2_x86_64.whl
1da753e4127a0bdcdfbfa6639568057e  numpy-2.2.5-cp313-cp313t-win32.whl
a8c869efc0888f214239e5c4f0e6acfb  numpy-2.2.5-cp313-cp313t-win_amd64.whl
7255b93f38e7d54a59d6798182f24c6a  numpy-2.2.5-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
6743ce025de6c245b03ca8511b306503  numpy-2.2.5-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
5abbeec4ff2add1c46f8779f730c73fa  numpy-2.2.5-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
8e2e01f02d05e111ef2b104d1b3afad1  numpy-2.2.5-pp310-pypy310_pp73-win_amd64.whl
df2e46b468f9fdf06b13b04eca9a723f  numpy-2.2.5.tar.gz
SHA256
1f4a922da1729f4c40932b2af4fe84909c7a6e167e6e99f71838ce3a29f3fe26  numpy-2.2.5-cp310-cp310-macosx_10_9_x86_64.whl
b6f91524d31b34f4a5fee24f5bc16dcd1491b668798b6d85585d836c1e633a6a  numpy-2.2.5-cp310-cp310-macosx_11_0_arm64.whl
19f4718c9012e3baea91a7dba661dcab2451cda2550678dc30d53acb91a7290f  numpy-2.2.5-cp310-cp310-macosx_14_0_arm64.whl
eb7fd5b184e5d277afa9ec0ad5e4eb562ecff541e7f60e69ee69c8d59e9aeaba  numpy-2.2.5-cp310-cp310-macosx_14_0_x86_64.whl
6413d48a9be53e183eb06495d8e3b006ef8f87c324af68241bbe7a39e8ff54c3  numpy-2.2.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
7451f92eddf8503c9b8aa4fe6aa7e87fd51a29c2cfc5f7dbd72efde6c65acf57  numpy-2.2.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
0bcb1d057b7571334139129b7f941588f69ce7c4ed15a9d6162b2ea54ded700c  numpy-2.2.5-cp310-cp310-musllinux_1_2_aarch64.whl
36ab5b23915887543441efd0417e6a3baa08634308894316f446027611b53bf1  numpy-2.2.5-cp310-cp310-musllinux_1_2_x86_64.whl
422cc684f17bc963da5f59a31530b3936f57c95a29743056ef7a7903a5dbdf88  numpy-2.2.5-cp310-cp310-win32.whl
e4f0b035d9d0ed519c813ee23e0a733db81ec37d2e9503afbb6e54ccfdee0fa7  numpy-2.2.5-cp310-cp310-win_amd64.whl
c42365005c7a6c42436a54d28c43fe0e01ca11eb2ac3cefe796c25a5f98e5e9b  numpy-2.2.5-cp311-cp311-macosx_10_9_x86_64.whl
498815b96f67dc347e03b719ef49c772589fb74b8ee9ea2c37feae915ad6ebda  numpy-2.2.5-cp311-cp311-macosx_11_0_arm64.whl
6411f744f7f20081b1b4e7112e0f4c9c5b08f94b9f086e6f0adf3645f85d3a4d  numpy-2.2.5-cp311-cp311-macosx_14_0_arm64.whl
9de6832228f617c9ef45d948ec1cd8949c482238d68b2477e6f642c33a7b0a54  numpy-2.2.5-cp311-cp311-macosx_14_0_x86_64.whl
369e0d4647c17c9363244f3468f2227d557a74b6781cb62ce57cf3ef5cc7c610  numpy-2.2.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
262d23f383170f99cd9191a7c85b9a50970fe9069b2f8ab5d786eca8a675d60b  numpy-2.2.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
aa70fdbdc3b169d69e8c59e65c07a1c9351ceb438e627f0fdcd471015cd956be  numpy-2.2.5-cp311-cp311-musllinux_1_2_aarch64.whl
37e32e985f03c06206582a7323ef926b4e78bdaa6915095ef08070471865b906  numpy-2.2.5-cp311-cp311-musllinux_1_2_x86_64.whl
f5045039100ed58fa817a6227a356240ea1b9a1bc141018864c306c1a16d4175  numpy-2.2.5-cp311-cp311-win32.whl
b13f04968b46ad705f7c8a80122a42ae8f620536ea38cf4bdd374302926424dd  numpy-2.2.5-cp311-cp311-win_amd64.whl
ee461a4eaab4f165b68780a6a1af95fb23a29932be7569b9fab666c407969051  numpy-2.2.5-cp312-cp312-macosx_10_13_x86_64.whl
ec31367fd6a255dc8de4772bd1658c3e926d8e860a0b6e922b615e532d320ddc  numpy-2.2.5-cp312-cp312-macosx_11_0_arm64.whl
47834cde750d3c9f4e52c6ca28a7361859fcaf52695c7dc3cc1a720b8922683e  numpy-2.2.5-cp312-cp312-macosx_14_0_arm64.whl
2c1a1c6ccce4022383583a6ded7bbcda22fc635eb4eb1e0a053336425ed36dfa  numpy-2.2.5-cp312-cp312-macosx_14_0_x86_64.whl
9d75f338f5f79ee23548b03d801d28a505198297534f62416391857ea0479571  numpy-2.2.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
3a801fef99668f309b88640e28d261991bfad9617c27beda4a3aec4f217ea073  numpy-2.2.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
abe38cd8381245a7f49967a6010e77dbf3680bd3627c0fe4362dd693b404c7f8  numpy-2.2.5-cp312-cp312-musllinux_1_2_aarch64.whl
5a0ac90e46fdb5649ab6369d1ab6104bfe5854ab19b645bf5cda0127a13034ae  numpy-2.2.5-cp312-cp312-musllinux_1_2_x86_64.whl
0cd48122a6b7eab8f06404805b1bd5856200e3ed6f8a1b9a194f9d9054631beb  numpy-2.2.5-cp312-cp312-win32.whl
ced69262a8278547e63409b2653b372bf4baff0870c57efa76c5703fd6543282  numpy-2.2.5-cp312-cp312-win_amd64.whl
059b51b658f4414fff78c6d7b1b4e18283ab5fa56d270ff212d5ba0c561846f4  numpy-2.2.5-cp313-cp313-macosx_10_13_x86_64.whl
47f9ed103af0bc63182609044b0490747e03bd20a67e391192dde119bf43d52f  numpy-2.2.5-cp313-cp313-macosx_11_0_arm64.whl
261a1ef047751bb02f29dfe337230b5882b54521ca121fc7f62668133cb119c9  numpy-2.2.5-cp313-cp313-macosx_14_0_arm64.whl
4520caa3807c1ceb005d125a75e715567806fed67e315cea619d5ec6e75a4191  numpy-2.2.5-cp313-cp313-macosx_14_0_x86_64.whl
3d14b17b9be5f9c9301f43d2e2a4886a33b53f4e6fdf9ca2f4cc60aeeee76372  numpy-2.2.5-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
2ba321813a00e508d5421104464510cc962a6f791aa2fca1c97b1e65027da80d  numpy-2.2.5-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
a4cbdef3ddf777423060c6f81b5694bad2dc9675f110c4b2a60dc0181543fac7  numpy-2.2.5-cp313-cp313-musllinux_1_2_aarch64.whl
54088a5a147ab71a8e7fdfd8c3601972751ded0739c6b696ad9cb0343e21ab73  numpy-2.2.5-cp313-cp313-musllinux_1_2_x86_64.whl
c8b82a55ef86a2d8e81b63da85e55f5537d2157165be1cb2ce7cfa57b6aef38b  numpy-2.2.5-cp313-cp313-win32.whl
d8882a829fd779f0f43998e931c466802a77ca1ee0fe25a3abe50278616b1471  numpy-2.2.5-cp313-cp313-win_amd64.whl
e8b025c351b9f0e8b5436cf28a07fa4ac0204d67b38f01433ac7f9b870fa38c6  numpy-2.2.5-cp313-cp313t-macosx_10_13_x86_64.whl
8dfa94b6a4374e7851bbb6f35e6ded2120b752b063e6acdd3157e4d2bb922eba  numpy-2.2.5-cp313-cp313t-macosx_11_0_arm64.whl
97c8425d4e26437e65e1d189d22dff4a079b747ff9c2788057bfb8114ce1e133  numpy-2.2.5-cp313-cp313t-macosx_14_0_arm64.whl
352d330048c055ea6db701130abc48a21bec690a8d38f8284e00fab256dc1376  numpy-2.2.5-cp313-cp313t-macosx_14_0_x86_64.whl
8b4c0773b6ada798f51f0f8e30c054d32304ccc6e9c5d93d46cb26f3d385ab19  numpy-2.2.5-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
55f09e00d4dccd76b179c0f18a44f041e5332fd0e022886ba1c0bbf3ea4a18d0  numpy-2.2.5-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
02f226baeefa68f7d579e213d0f3493496397d8f1cff5e2b222af274c86a552a  numpy-2.2.5-cp313-cp313t-musllinux_1_2_aarch64.whl
c26843fd58f65da9491165072da2cccc372530681de481ef670dcc8e27cfb066  numpy-2.2.5-cp313-cp313t-musllinux_1_2_x86_64.whl
1a161c2c79ab30fe4501d5a2bbfe8b162490757cf90b7f05be8b80bc02f7bb8e  numpy-2.2.5-cp313-cp313t-win32.whl
d403c84991b5ad291d3809bace5e85f4bbf44a04bdc9a88ed2bb1807b3360bb8  numpy-2.2.5-cp313-cp313t-win_amd64.whl
b4ea7e1cff6784e58fe281ce7e7f05036b3e1c89c6f922a6bfbc0a7e8768adbe  numpy-2.2.5-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
d7543263084a85fbc09c704b515395398d31d6395518446237eac219eab9e55e  numpy-2.2.5-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
0255732338c4fdd00996c0421884ea8a3651eea555c3a56b84892b66f696eb70  numpy-2.2.5-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
d2e3bdadaba0e040d1e7ab39db73e0afe2c74ae277f5614dad53eadbecbbb169  numpy-2.2.5-pp310-pypy310_pp73-win_amd64.whl
a9c0d994680cd991b1cb772e8b297340085466a6fe964bc9d4e80f5e2f43c291  numpy-2.2.5.tar.gz

v2.2.4: 2.2.4 (Mar 16, 2025)

Compare Source

NumPy 2.2.4 Release Notes

NumPy 2.2.4 is a patch release that fixes bugs found after the 2.2.3
release. There are a large number of typing improvements, the rest of
the changes are the usual mix of bugfixes and platform maintenace.

This release supports Python versions 3.10-3.13.

Contributors

A total of 15 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Abhishek Kumar
  • Andrej Zhilenkov
  • Andrew Nelson
  • Charles Harris
  • Giovanni Del Monte
  • Guan Ming(Wesley) Chiu +
  • Jonathan Albrecht +
  • Joren Hammudoglu
  • Mark Harfouche
  • Matthieu Darbois
  • Nathan Goldbaum
  • Pieter Eendebak
  • Sebastian Berg
  • Tyler Reddy
  • lvllvl +

Pull requests merged

A total of 17 pull requests were merged for this release.

Checksums

MD5
935928cbd2de140da097f6d5f4a01d72  numpy-2.2.4-cp310-cp310-macosx_10_9_x86_64.whl
bf7fd01bb177885e920173b610c195d9  numpy-2.2.4-cp310-cp310-macosx_11_0_arm64.whl
826e52cd898567a0c446113ab7a7b362  numpy-2.2.4-cp310-cp310-macosx_14_0_arm64.whl
9982a91d7327aea541c24aff94d3e462  numpy-2.2.4-cp310-cp310-macosx_14_0_x86_64.whl
5bdf5b63f4ee01fa808d13043b2a2275  numpy-2.2.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
677b3031105e24eaee2e0e57d7c2a306  numpy-2.2.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
d857867787fe1eb236670e7fdb25f414  numpy-2.2.4-cp310-cp310-musllinux_1_2_aarch64.whl
a5aff3a7eb2923878e67fbe1cd04a9e9  numpy-2.2.4-cp310-cp310-musllinux_1_2_x86_64.whl
e00bd3ac85d8f34b46b7f97a8278aeb3  numpy-2.2.4-cp310-cp310-win32.whl
e5cb2a5d14bccee316bb73173be125ec  numpy-2.2.4-cp310-cp310-win_amd64.whl
494f60d8e1c3500413bd093bb3f486ea  numpy-2.2.4-cp311-cp311-macosx_10_9_x86_64.whl
a886a9f3e80a60ce6ba95b431578bbca  numpy-2.2.4-cp311-cp311-macosx_11_0_arm64.whl
889f3b507bab9272d9b549780840a642  numpy-2.2.4-cp311-cp311-macosx_14_0_arm64.whl
059788668d2c4e9aace4858e77c099ed  numpy-2.2.4-cp311-cp311-macosx_14_0_x86_64.whl
db9ae978afb76a4bf79df0657a66aaeb  numpy-2.2.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
e36963a4c177157dc7b0775c309fa5a8  numpy-2.2.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
3603e683878b74f38e5617f04ff6a369  numpy-2.2.4-cp311-cp311-musllinux_1_2_aarch64.whl
afbc410fb9b42b19f4f7c81c21d6777f  numpy-2.2.4-cp311-cp311-musllinux_1_2_x86_64.whl
33ff8081378188894097942f80c33e26  numpy-2.2.4-cp311-cp311-win32.whl
5b11fe8d26318d85e0bc577a654f6643  numpy-2.2.4-cp311-cp311-win_amd64.whl
91121787f396d3e98210de8b617e5d48  numpy-2.2.4-cp312-cp312-macosx_10_13_x86_64.whl
c524d1020b4652aacf4477d1628fa1ba  numpy-2.2.4-cp312-cp312-macosx_11_0_arm64.whl
eb08f551bdd6772155bb39ac0da47479  numpy-2.2.4-cp312-cp312-macosx_14_0_arm64.whl
7cb37fc9145d0ebbea5666b4f9ed1027  numpy-2.2.4-cp312-cp312-macosx_14_0_x86_64.whl
c4452a5dc557c291904b5c51a4148237  numpy-2.2.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
bd23a12ead870759f264160ab38b2c9d  numpy-2.2.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
07b44109381985b48d1eef80feebc5ad  numpy-2.2.4-cp312-cp312-musllinux_1_2_aarch64.whl
95f1a27d33106fa9f40ee0714681c840  numpy-2.2.4-cp312-cp312-musllinux_1_2_x86_64.whl
507e550a55b19dedf267b58a487ba0bc  numpy-2.2.4-cp312-cp312-win32.whl
be21ccbf8931e92ba1fdb2dc1250bf2a  numpy-2.2.4-cp312-cp312-win_amd64.whl
e94003c2b65d81b00203711c5c42fb8e  numpy-2.2.4-cp313-cp313-macosx_10_13_x86_64.whl
cf781fd5412ffd826e0436883452cc17  numpy-2.2.4-cp313-cp313-macosx_11_0_arm64.whl
92c9a30386a64f2deddad1db742bd296  numpy-2.2.4-cp313-cp313-macosx_14_0_arm64.whl
7fd16554fa0a15b7f99b1fabf1c4592c  numpy-2.2.4-cp313-cp313-macosx_14_0_x86_64.whl
9293b0575a902b2d55c35567dee7679e  numpy-2.2.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
9970699bd95e8a64a562b1e6328b83d0  numpy-2.2.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e8597c611a919a8e88229d6889c1f86e  numpy-2.2.4-cp313-cp313-musllinux_1_2_aarch64.whl
329288501f012606605bdbed368e58e9  numpy-2.2.4-cp313-cp313-musllinux_1_2_x86_64.whl
04bf8d0f6a9e279ab01df4ed0b4aeee1  numpy-2.2.4-cp313-cp313-win32.whl
66801fe84a436b7ed3be6e0082b86917  numpy-2.2.4-cp313-cp313-win_amd64.whl
3e2f31e01b45cd16a87b794477de3714  numpy-2.2.4-cp313-cp313t-macosx_10_13_x86_64.whl
7504018213a3a8fea7173e2c1d0fcfd1  numpy-2.2.4-cp313-cp313t-macosx_11_0_arm64.whl
e299021397c3cdb941b7ffe77cf0fefe  numpy-2.2.4-cp313-cp313t-macosx_14_0_arm64.whl
1cc2731a246079bcab361179f38e7ccb  numpy-2.2.4-cp313-cp313t-macosx_14_0_x86_64.whl
e6eccf936d25c9eda9df1a4d50ae2fdc  numpy-2.2.4-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
ba825efd05cca6d56c3dca9f7f1f88e7  numpy-2.2.4-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
369eebec47c9c27cb4841a13e9522167  numpy-2.2.4-cp313-cp313t-musllinux_1_2_aarch64.whl
554dbfa52988d01f715cbe8d4da4b409  numpy-2.2.4-cp313-cp313t-musllinux_1_2_x86_64.whl
811d25a008c68086c9382487e9a4127a  numpy-2.2.4-cp313-cp313t-win32.whl
893fd2fdd42f386e300bee885bbb7778  numpy-2.2.4-cp313-cp313t-win_amd64.whl
65e284546c5ee575eca0a3726c0a1d98  numpy-2.2.4-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
e4e73511eac8f1a10c6abbd6fa2fa0aa  numpy-2.2.4-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
a884ed5263b91fa87b5e3d14caf955a5  numpy-2.2.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
7330087a6ad1527ae20a495e2fb3b357  numpy-2.2.4-pp310-pypy310_pp73-win_amd64.whl
56232f4a69b03dd7a87a55fffc5f2ebc  numpy-2.2.4.tar.gz
SHA256
8146f3550d627252269ac42ae660281d673eb6f8b32f113538e0cc2a9aed42b9  numpy-2.2.4-cp310-cp310-macosx_10_9_x86_64.whl
e642d86b8f956098b564a45e6f6ce68a22c2c97a04f5acd3f221f57b8cb850ae  numpy-2.2.4-cp310-cp310-macosx_11_0_arm64.whl
a84eda42bd12edc36eb5b53bbcc9b406820d3353f1994b6cfe453a33ff101775  numpy-2.2.4-cp310-cp310-macosx_14_0_arm64.whl
4ba5054787e89c59c593a4169830ab362ac2bee8a969249dc56e5d7d20ff8df9  numpy-2.2.4-cp310-cp310-macosx_14_0_x86_64.whl
7716e4a9b7af82c06a2543c53ca476fa0b57e4d760481273e09da04b74ee6ee2  numpy-2.2.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
adf8c1d66f432ce577d0197dceaac2ac00c0759f573f28516246351c58a85020  numpy-2.2.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
218f061d2faa73621fa23d6359442b0fc658d5b9a70801373625d958259eaca3  numpy-2.2.4-cp310-cp310-musllinux_1_2_aarch64.whl
df2f57871a96bbc1b69733cd4c51dc33bea66146b8c63cacbfed73eec0883017  numpy-2.2.4-cp310-cp310-musllinux_1_2_x86_64.whl
a0258ad1f44f138b791327961caedffbf9612bfa504ab9597157806faa95194a  numpy-2.2.4-cp310-cp310-win32.whl
0d54974f9cf14acf49c60f0f7f4084b6579d24d439453d5fc5805d46a165b542  numpy-2.2.4-cp310-cp310-win_amd64.whl
e9e0a277bb2eb5d8a7407e14688b85fd8ad628ee4e0c7930415687b6564207a4  numpy-2.2.4-cp311-cp311-macosx_10_9_x86_64.whl
9eeea959168ea555e556b8188da5fa7831e21d91ce031e95ce23747b7609f8a4  numpy-2.2.4-cp311-cp311-macosx_11_0_arm64.whl
bd3ad3b0a40e713fc68f99ecfd07124195333f1e689387c180813f0e94309d6f  numpy-2.2.4-cp311-cp311-macosx_14_0_arm64.whl
cf28633d64294969c019c6df4ff37f5698e8326db68cc2b66576a51fad634880  numpy-2.2.4-cp311-cp311-macosx_14_0_x86_64.whl
2fa8fa7697ad1646b5c93de1719965844e004fcad23c91228aca1cf0800044a1  numpy-2.2.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
f4162988a360a29af158aeb4a2f4f09ffed6a969c9776f8f3bdee9b06a8ab7e5  numpy-2.2.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
892c10d6a73e0f14935c31229e03325a7b3093fafd6ce0af704be7f894d95687  numpy-2.2.4-cp311-cp311-musllinux_1_2_aarch64.whl
db1f1c22173ac1c58db249ae48aa7ead29f534b9a948bc56828337aa84a32ed6  numpy-2.2.4-cp311-cp311-musllinux_1_2_x86_64.whl
ea2bb7e2ae9e37d96835b3576a4fa4b3a97592fbea8ef7c3587078b0068b8f09  numpy-2.2.4-cp311-cp311-win32.whl
f7de08cbe5551911886d1ab60de58448c6df0f67d9feb7d1fb21e9875ef95e91  numpy-2.2.4-cp311-cp311-win_amd64.whl
a7b9084668aa0f64e64bd00d27ba5146ef1c3a8835f3bd912e7a9e01326804c4  numpy-2.2.4-cp312-cp312-macosx_10_13_x86_64.whl
dbe512c511956b893d2dacd007d955a3f03d555ae05cfa3ff1c1ff6df8851854  numpy-2.2.4-cp312-cp312-macosx_11_0_arm64.whl
bb649f8b207ab07caebba230d851b579a3c8711a851d29efe15008e31bb4de24  numpy-2.2.4-cp312-cp312-macosx_14_0_arm64.whl
f34dc300df798742b3d06515aa2a0aee20941c13579d7a2f2e10af01ae4901ee  numpy-2.2.4-cp312-cp312-macosx_14_0_x86_64.whl
c3f7ac96b16955634e223b579a3e5798df59007ca43e8d451a0e6a50f6bfdfba  numpy-2.2.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
4f92084defa704deadd4e0a5ab1dc52d8ac9e8a8ef617f3fbb853e79b0ea3592  numpy-2.2.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
7a4e84a6283b36632e2a5b56e121961f6542ab886bc9e12f8f9818b3c266bfbb  numpy-2.2.4-cp312-cp312-musllinux_1_2_aarch64.whl
11c43995255eb4127115956495f43e9343736edb7fcdb0d973defd9de14cd84f  numpy-2.2.4-cp312-cp312-musllinux_1_2_x86_64.whl
65ef3468b53269eb5fdb3a5c09508c032b793da03251d5f8722b1194f1790c00  numpy-2.2.4-cp312-cp312-win32.whl
2aad3c17ed2ff455b8eaafe06bcdae0062a1db77cb99f4b9cbb5f4ecb13c5146  numpy-2.2.4-cp312-cp312-win_amd64.whl
1cf4e5c6a278d620dee9ddeb487dc6a860f9b199eadeecc567f777daace1e9e7  numpy-2.2.4-cp313-cp313-macosx_10_13_x86_64.whl
1974afec0b479e50438fc3648974268f972e2d908ddb6d7fb634598cdb8260a0  numpy-2.2.4-cp313-cp313-macosx_11_0_arm64.whl
79bd5f0a02aa16808fcbc79a9a376a147cc1045f7dfe44c6e7d53fa8b8a79392  numpy-2.2.4-cp313-cp313-macosx_14_0_arm64.whl
3387dd7232804b341165cedcb90694565a6015433ee076c6754775e85d86f1fc  numpy-2.2.4-cp313-cp313-macosx_14_0_x86_64.whl
6f527d8fdb0286fd2fd97a2a96c6be17ba4232da346931d967a0630050dfd298  numpy-2.2.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
bce43e386c16898b91e162e5baaad90c4b06f9dcbe36282490032cec98dc8ae7  numpy-2.2.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
31504f970f563d99f71a3512d0c01a645b692b12a63630d6aafa0939e52361e6  numpy-2.2.4-cp313-cp313-musllinux_1_2_aarch64.whl
81413336ef121a6ba746892fad881a83351ee3e1e4011f52e97fba79233611fd  numpy-2.2.4-cp313-cp313-musllinux_1_2_x86_64.whl
f486038e44caa08dbd97275a9a35a283a8f1d2f0ee60ac260a1790e76660833c  numpy-2.2.4-cp313-cp313-win32.whl
207a2b8441cc8b6a2a78c9ddc64d00d20c303d79fba08c577752f080c4007ee3  numpy-2.2.4-cp313-cp313-win_amd64.whl
8120575cb4882318c791f839a4fd66161a6fa46f3f0a5e613071aae35b5dd8f8  numpy-2.2.4-cp313-cp313t-macosx_10_13_x86_64.whl
a761ba0fa886a7bb33c6c8f6f20213735cb19642c580a931c625ee377ee8bd39  numpy-2.2.4-cp313-cp313t-macosx_11_0_arm64.whl
ac0280f1ba4a4bfff363a99a6aceed4f8e123f8a9b234c89140f5e894e452ecd  numpy-2.2.4-cp313-cp313t-macosx_14_0_arm64.whl
879cf3a9a2b53a4672a168c21375166171bc3932b7e21f622201811c43cdd3b0  numpy-2.2.4-cp313-cp313t-macosx_14_0_x86_64.whl
f05d4198c1bacc9124018109c5fba2f3201dbe7ab6e92ff100494f236209c960  numpy-2.2.4-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
e2f085ce2e813a50dfd0e01fbfc0c12bbe5d2063d99f8b29da30e544fb6483b8  numpy-2.2.4-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
92bda934a791c01d6d9d8e038363c50918ef7c40601552a58ac84c9613a665bc  numpy-2.2.4-cp313-cp313t-musllinux_1_2_aarch64.whl
ee4d528022f4c5ff67332469e10efe06a267e32f4067dc76bb7e2cddf3cd25ff  numpy-2.2.4-cp313-cp313t-musllinux_1_2_x86_64.whl
05c076d531e9998e7e694c36e8b349969c56eadd2cdcd07242958489d79a7286  numpy-2.2.4-cp313-cp313t-win32.whl
188dcbca89834cc2e14eb2f106c96d6d46f200fe0200310fc29089657379c58d  numpy-2.2.4-cp313-cp313t-win_amd64.whl
7051ee569db5fbac144335e0f3b9c2337e0c8d5c9fee015f259a5bd70772b7e8  numpy-2.2.4-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
ab2939cd5bec30a7430cbdb2287b63151b77cf9624de0532d629c9a1c59b1d5c  numpy-2.2.4-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
d0f35b19894a9e08639fd60a1ec1978cb7f5f7f1eace62f38dd36be8aecdef4d  numpy-2.2.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b4adfbbc64014976d2f91084915ca4e626fbf2057fb81af209c1a6d776d23e3d  numpy-2.2.4-pp310-pypy310_pp73-win_amd64.whl
9ba03692a45d3eef66559efe1d1096c4b9b75c0986b5dff5530c378fb8331d4f  numpy-2.2.4.tar.gz

Configuration

📅 Schedule: Branch creation - At any time (no schedule defined), Automerge - At any time (no schedule defined).

🚦 Automerge: Enabled.

Rebasing: Whenever PR is behind base branch, or you tick the rebase/retry checkbox.

🔕 Ignore: Close this PR and you won't be reminded about this update again.


  • If you want to rebase/retry this PR, check this box

This PR has been generated by Renovate Bot.

This PR contains the following updates: | Package | Type | Update | Change | |---|---|---|---| | [numpy](https://github.com/numpy/numpy) ([changelog](https://numpy.org/doc/stable/release)) | project.dependencies | patch | `==2.2.3` -> `==2.2.5` | --- ### Release Notes <details> <summary>numpy/numpy (numpy)</summary> ### [`v2.2.5`](https://github.com/numpy/numpy/releases/tag/v2.2.5): (Apr 19, 2025) [Compare Source](https://github.com/numpy/numpy/compare/v2.2.4...v2.2.5) ### NumPy 2.2.5 Release Notes NumPy 2.2.5 is a patch release that fixes bugs found after the 2.2.4 release. It has a large number of typing fixes/improvements as well as the normal bug fixes and some CI maintenance. This release supports Python versions 3.10-3.13. #### Contributors A total of 7 people contributed to this release. People with a "+" by their names contributed a patch for the first time. - Charles Harris - Joren Hammudoglu - Baskar Gopinath + - Nathan Goldbaum - Nicholas Christensen + - Sayed Adel - karl + #### Pull requests merged A total of 19 pull requests were merged for this release. - [#&#8203;28545](https://github.com/numpy/numpy/pull/28545): MAINT: Prepare 2.2.x for further development - [#&#8203;28582](https://github.com/numpy/numpy/pull/28582): BUG: Fix return type of NpyIter_GetIterNext in Cython declarations - [#&#8203;28583](https://github.com/numpy/numpy/pull/28583): BUG: avoid deadlocks with C++ shared mutex in dispatch cache - [#&#8203;28585](https://github.com/numpy/numpy/pull/28585): TYP: fix typing errors in `_core.strings` - [#&#8203;28631](https://github.com/numpy/numpy/pull/28631): MAINT, CI: Update Ubuntu to 22.04 in azure-pipelines - [#&#8203;28632](https://github.com/numpy/numpy/pull/28632): BUG: Set writeable flag for writeable dlpacks. - [#&#8203;28633](https://github.com/numpy/numpy/pull/28633): BUG: Fix crackfortran parsing error when a division occurs within... - [#&#8203;28650](https://github.com/numpy/numpy/pull/28650): TYP: fix `ndarray.tolist()` and `.item()` for unknown dtype - [#&#8203;28654](https://github.com/numpy/numpy/pull/28654): BUG: fix deepcopying StringDType arrays ([#&#8203;28643](https://github.com/numpy/numpy/issues/28643)) - [#&#8203;28661](https://github.com/numpy/numpy/pull/28661): TYP: Accept objects that `write()` to `str` in `savetxt` - [#&#8203;28663](https://github.com/numpy/numpy/pull/28663): CI: Replace QEMU armhf with native (32-bit compatibility mode) - [#&#8203;28682](https://github.com/numpy/numpy/pull/28682): SIMD: Resolve Highway QSort symbol linking error on aarch32/ASIMD - [#&#8203;28683](https://github.com/numpy/numpy/pull/28683): TYP: add missing `"b1"` literals for `dtype[bool]` - [#&#8203;28705](https://github.com/numpy/numpy/pull/28705): TYP: Fix false rejection of `NDArray[object_].__abs__()` - [#&#8203;28706](https://github.com/numpy/numpy/pull/28706): TYP: Fix inconsistent `NDArray[float64].__[r]truediv__` return... - [#&#8203;28723](https://github.com/numpy/numpy/pull/28723): TYP: fix string-like `ndarray` rich comparison operators - [#&#8203;28758](https://github.com/numpy/numpy/pull/28758): TYP: some `[arg]partition` fixes - [#&#8203;28772](https://github.com/numpy/numpy/pull/28772): TYP: fix incorrect `random.Generator.integers` return type - [#&#8203;28774](https://github.com/numpy/numpy/pull/28774): TYP: fix `count_nonzero` signature #### Checksums ##### MD5 3a5d0889d6d7951f44bc6f7a03fa30c6 numpy-2.2.5-cp310-cp310-macosx_10_9_x86_64.whl bcf9f4e768b070e17b2635f422a6e27d numpy-2.2.5-cp310-cp310-macosx_11_0_arm64.whl e82c8fa47a65bb5c2c83295f549dab12 numpy-2.2.5-cp310-cp310-macosx_14_0_arm64.whl a5511a995c0f79a8b9a81f2b50e9f692 numpy-2.2.5-cp310-cp310-macosx_14_0_x86_64.whl 72bfc1f98238a8e4ba08999e61111e0e numpy-2.2.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 146c83a5b8099d8d2607392b2ef7fedf numpy-2.2.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 6ebdc80b54b008a10575e5d7bbb613f5 numpy-2.2.5-cp310-cp310-musllinux_1_2_aarch64.whl 97efde6443da8f9280a5fc2614a087e5 numpy-2.2.5-cp310-cp310-musllinux_1_2_x86_64.whl c143f352206cec535b41b6b1d34c5898 numpy-2.2.5-cp310-cp310-win32.whl 0b17fbbf584785f675f1c5b24a00ff93 numpy-2.2.5-cp310-cp310-win_amd64.whl 58532622d7eff69a3c71c1ae89dea070 numpy-2.2.5-cp311-cp311-macosx_10_9_x86_64.whl 0d002c733bb02debe0b15de5ba872d1e numpy-2.2.5-cp311-cp311-macosx_11_0_arm64.whl ff0c736c60be96506806061ace2251a1 numpy-2.2.5-cp311-cp311-macosx_14_0_arm64.whl 4febdec973c4405fd08ef35e0c130de1 numpy-2.2.5-cp311-cp311-macosx_14_0_x86_64.whl 0bf4e457c612e565420e135458e70fe0 numpy-2.2.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl a43b608ad15ebdc0960611497205d598 numpy-2.2.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 7b4b1afd412149a9af7c25d7346fade8 numpy-2.2.5-cp311-cp311-musllinux_1_2_aarch64.whl a1e70be013820f92dbfd4796fc4044bb numpy-2.2.5-cp311-cp311-musllinux_1_2_x86_64.whl 73344e05a6fec0b38183363b4a026252 numpy-2.2.5-cp311-cp311-win32.whl b7d5fdd23057c58d15c84eef6bfedb55 numpy-2.2.5-cp311-cp311-win_amd64.whl 801b11bb546aac2d92d7b3d5d6c90e86 numpy-2.2.5-cp312-cp312-macosx_10_13_x86_64.whl 68dc4298cad9405ad30cfb723be4ae48 numpy-2.2.5-cp312-cp312-macosx_11_0_arm64.whl c31c872e0fa8df5ed7f91882621a925f numpy-2.2.5-cp312-cp312-macosx_14_0_arm64.whl 179dfa545c32c44b77cf8db3b973785f numpy-2.2.5-cp312-cp312-macosx_14_0_x86_64.whl 4562513ff2f1e3f31d66b8e435000141 numpy-2.2.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl c80a2d8aab1a4d6a66f3fca2f0744744 numpy-2.2.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl e363e0d8c116522d55b0ddd0cbf2de67 numpy-2.2.5-cp312-cp312-musllinux_1_2_aarch64.whl d31d443270c76b7238ece2f87b048d21 numpy-2.2.5-cp312-cp312-musllinux_1_2_x86_64.whl bf469fe048fa4ed75a5d8725297e283a numpy-2.2.5-cp312-cp312-win32.whl 069b832aa15b6a815497135e7fa8cae8 numpy-2.2.5-cp312-cp312-win_amd64.whl b2cf059c831cbcfdb4044613a1e5bc8d numpy-2.2.5-cp313-cp313-macosx_10_13_x86_64.whl 70bcb93e55ff0f6602636602e0834607 numpy-2.2.5-cp313-cp313-macosx_11_0_arm64.whl 00c4938d67fd5b658ad92ac26fbe9cab numpy-2.2.5-cp313-cp313-macosx_14_0_arm64.whl 0ca38aa51874b9252a2c9d85f81dcd07 numpy-2.2.5-cp313-cp313-macosx_14_0_x86_64.whl 6062cf707b8bc07a1600af0991a0a88e numpy-2.2.5-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 62c1cf7de0327546f3a1e3852de640d3 numpy-2.2.5-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl ab3ad3390396552f76160139cc528784 numpy-2.2.5-cp313-cp313-musllinux_1_2_aarch64.whl d258ba55c9a3936fa0c113cac8bbc0cc numpy-2.2.5-cp313-cp313-musllinux_1_2_x86_64.whl 59bb7e1acb81fc4a02c3b791e110f01e numpy-2.2.5-cp313-cp313-win32.whl 2e5728a9e5c6405d3a22138e4dd7019f numpy-2.2.5-cp313-cp313-win_amd64.whl d315521ec7275d0341787f2450e57e55 numpy-2.2.5-cp313-cp313t-macosx_10_13_x86_64.whl 17018c7c259ae81cf2ca4f58523d7d1c numpy-2.2.5-cp313-cp313t-macosx_11_0_arm64.whl ef6fd6a9c6a07db004a272b82f0ea710 numpy-2.2.5-cp313-cp313t-macosx_14_0_arm64.whl 07b2baf70b84b44ca6924794d9c7e431 numpy-2.2.5-cp313-cp313t-macosx_14_0_x86_64.whl a2fb1ed562d2b6da091d980c7486d113 numpy-2.2.5-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 22fa9137283f463436d7b20a220071cd numpy-2.2.5-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl b0ae924e4834155eb5ac159ae611c292 numpy-2.2.5-cp313-cp313t-musllinux_1_2_aarch64.whl c7a8351484f2df9a499c68f1ac73121c numpy-2.2.5-cp313-cp313t-musllinux_1_2_x86_64.whl 1da753e4127a0bdcdfbfa6639568057e numpy-2.2.5-cp313-cp313t-win32.whl a8c869efc0888f214239e5c4f0e6acfb numpy-2.2.5-cp313-cp313t-win_amd64.whl 7255b93f38e7d54a59d6798182f24c6a numpy-2.2.5-pp310-pypy310_pp73-macosx_10_15_x86_64.whl 6743ce025de6c245b03ca8511b306503 numpy-2.2.5-pp310-pypy310_pp73-macosx_14_0_x86_64.whl 5abbeec4ff2add1c46f8779f730c73fa numpy-2.2.5-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 8e2e01f02d05e111ef2b104d1b3afad1 numpy-2.2.5-pp310-pypy310_pp73-win_amd64.whl df2e46b468f9fdf06b13b04eca9a723f numpy-2.2.5.tar.gz ##### SHA256 1f4a922da1729f4c40932b2af4fe84909c7a6e167e6e99f71838ce3a29f3fe26 numpy-2.2.5-cp310-cp310-macosx_10_9_x86_64.whl b6f91524d31b34f4a5fee24f5bc16dcd1491b668798b6d85585d836c1e633a6a numpy-2.2.5-cp310-cp310-macosx_11_0_arm64.whl 19f4718c9012e3baea91a7dba661dcab2451cda2550678dc30d53acb91a7290f numpy-2.2.5-cp310-cp310-macosx_14_0_arm64.whl eb7fd5b184e5d277afa9ec0ad5e4eb562ecff541e7f60e69ee69c8d59e9aeaba numpy-2.2.5-cp310-cp310-macosx_14_0_x86_64.whl 6413d48a9be53e183eb06495d8e3b006ef8f87c324af68241bbe7a39e8ff54c3 numpy-2.2.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 7451f92eddf8503c9b8aa4fe6aa7e87fd51a29c2cfc5f7dbd72efde6c65acf57 numpy-2.2.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 0bcb1d057b7571334139129b7f941588f69ce7c4ed15a9d6162b2ea54ded700c numpy-2.2.5-cp310-cp310-musllinux_1_2_aarch64.whl 36ab5b23915887543441efd0417e6a3baa08634308894316f446027611b53bf1 numpy-2.2.5-cp310-cp310-musllinux_1_2_x86_64.whl 422cc684f17bc963da5f59a31530b3936f57c95a29743056ef7a7903a5dbdf88 numpy-2.2.5-cp310-cp310-win32.whl e4f0b035d9d0ed519c813ee23e0a733db81ec37d2e9503afbb6e54ccfdee0fa7 numpy-2.2.5-cp310-cp310-win_amd64.whl c42365005c7a6c42436a54d28c43fe0e01ca11eb2ac3cefe796c25a5f98e5e9b numpy-2.2.5-cp311-cp311-macosx_10_9_x86_64.whl 498815b96f67dc347e03b719ef49c772589fb74b8ee9ea2c37feae915ad6ebda numpy-2.2.5-cp311-cp311-macosx_11_0_arm64.whl 6411f744f7f20081b1b4e7112e0f4c9c5b08f94b9f086e6f0adf3645f85d3a4d numpy-2.2.5-cp311-cp311-macosx_14_0_arm64.whl 9de6832228f617c9ef45d948ec1cd8949c482238d68b2477e6f642c33a7b0a54 numpy-2.2.5-cp311-cp311-macosx_14_0_x86_64.whl 369e0d4647c17c9363244f3468f2227d557a74b6781cb62ce57cf3ef5cc7c610 numpy-2.2.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 262d23f383170f99cd9191a7c85b9a50970fe9069b2f8ab5d786eca8a675d60b numpy-2.2.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl aa70fdbdc3b169d69e8c59e65c07a1c9351ceb438e627f0fdcd471015cd956be numpy-2.2.5-cp311-cp311-musllinux_1_2_aarch64.whl 37e32e985f03c06206582a7323ef926b4e78bdaa6915095ef08070471865b906 numpy-2.2.5-cp311-cp311-musllinux_1_2_x86_64.whl f5045039100ed58fa817a6227a356240ea1b9a1bc141018864c306c1a16d4175 numpy-2.2.5-cp311-cp311-win32.whl b13f04968b46ad705f7c8a80122a42ae8f620536ea38cf4bdd374302926424dd numpy-2.2.5-cp311-cp311-win_amd64.whl ee461a4eaab4f165b68780a6a1af95fb23a29932be7569b9fab666c407969051 numpy-2.2.5-cp312-cp312-macosx_10_13_x86_64.whl ec31367fd6a255dc8de4772bd1658c3e926d8e860a0b6e922b615e532d320ddc numpy-2.2.5-cp312-cp312-macosx_11_0_arm64.whl 47834cde750d3c9f4e52c6ca28a7361859fcaf52695c7dc3cc1a720b8922683e numpy-2.2.5-cp312-cp312-macosx_14_0_arm64.whl 2c1a1c6ccce4022383583a6ded7bbcda22fc635eb4eb1e0a053336425ed36dfa numpy-2.2.5-cp312-cp312-macosx_14_0_x86_64.whl 9d75f338f5f79ee23548b03d801d28a505198297534f62416391857ea0479571 numpy-2.2.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 3a801fef99668f309b88640e28d261991bfad9617c27beda4a3aec4f217ea073 numpy-2.2.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl abe38cd8381245a7f49967a6010e77dbf3680bd3627c0fe4362dd693b404c7f8 numpy-2.2.5-cp312-cp312-musllinux_1_2_aarch64.whl 5a0ac90e46fdb5649ab6369d1ab6104bfe5854ab19b645bf5cda0127a13034ae numpy-2.2.5-cp312-cp312-musllinux_1_2_x86_64.whl 0cd48122a6b7eab8f06404805b1bd5856200e3ed6f8a1b9a194f9d9054631beb numpy-2.2.5-cp312-cp312-win32.whl ced69262a8278547e63409b2653b372bf4baff0870c57efa76c5703fd6543282 numpy-2.2.5-cp312-cp312-win_amd64.whl 059b51b658f4414fff78c6d7b1b4e18283ab5fa56d270ff212d5ba0c561846f4 numpy-2.2.5-cp313-cp313-macosx_10_13_x86_64.whl 47f9ed103af0bc63182609044b0490747e03bd20a67e391192dde119bf43d52f numpy-2.2.5-cp313-cp313-macosx_11_0_arm64.whl 261a1ef047751bb02f29dfe337230b5882b54521ca121fc7f62668133cb119c9 numpy-2.2.5-cp313-cp313-macosx_14_0_arm64.whl 4520caa3807c1ceb005d125a75e715567806fed67e315cea619d5ec6e75a4191 numpy-2.2.5-cp313-cp313-macosx_14_0_x86_64.whl 3d14b17b9be5f9c9301f43d2e2a4886a33b53f4e6fdf9ca2f4cc60aeeee76372 numpy-2.2.5-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 2ba321813a00e508d5421104464510cc962a6f791aa2fca1c97b1e65027da80d numpy-2.2.5-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl a4cbdef3ddf777423060c6f81b5694bad2dc9675f110c4b2a60dc0181543fac7 numpy-2.2.5-cp313-cp313-musllinux_1_2_aarch64.whl 54088a5a147ab71a8e7fdfd8c3601972751ded0739c6b696ad9cb0343e21ab73 numpy-2.2.5-cp313-cp313-musllinux_1_2_x86_64.whl c8b82a55ef86a2d8e81b63da85e55f5537d2157165be1cb2ce7cfa57b6aef38b numpy-2.2.5-cp313-cp313-win32.whl d8882a829fd779f0f43998e931c466802a77ca1ee0fe25a3abe50278616b1471 numpy-2.2.5-cp313-cp313-win_amd64.whl e8b025c351b9f0e8b5436cf28a07fa4ac0204d67b38f01433ac7f9b870fa38c6 numpy-2.2.5-cp313-cp313t-macosx_10_13_x86_64.whl 8dfa94b6a4374e7851bbb6f35e6ded2120b752b063e6acdd3157e4d2bb922eba numpy-2.2.5-cp313-cp313t-macosx_11_0_arm64.whl 97c8425d4e26437e65e1d189d22dff4a079b747ff9c2788057bfb8114ce1e133 numpy-2.2.5-cp313-cp313t-macosx_14_0_arm64.whl 352d330048c055ea6db701130abc48a21bec690a8d38f8284e00fab256dc1376 numpy-2.2.5-cp313-cp313t-macosx_14_0_x86_64.whl 8b4c0773b6ada798f51f0f8e30c054d32304ccc6e9c5d93d46cb26f3d385ab19 numpy-2.2.5-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 55f09e00d4dccd76b179c0f18a44f041e5332fd0e022886ba1c0bbf3ea4a18d0 numpy-2.2.5-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 02f226baeefa68f7d579e213d0f3493496397d8f1cff5e2b222af274c86a552a numpy-2.2.5-cp313-cp313t-musllinux_1_2_aarch64.whl c26843fd58f65da9491165072da2cccc372530681de481ef670dcc8e27cfb066 numpy-2.2.5-cp313-cp313t-musllinux_1_2_x86_64.whl 1a161c2c79ab30fe4501d5a2bbfe8b162490757cf90b7f05be8b80bc02f7bb8e numpy-2.2.5-cp313-cp313t-win32.whl d403c84991b5ad291d3809bace5e85f4bbf44a04bdc9a88ed2bb1807b3360bb8 numpy-2.2.5-cp313-cp313t-win_amd64.whl b4ea7e1cff6784e58fe281ce7e7f05036b3e1c89c6f922a6bfbc0a7e8768adbe numpy-2.2.5-pp310-pypy310_pp73-macosx_10_15_x86_64.whl d7543263084a85fbc09c704b515395398d31d6395518446237eac219eab9e55e numpy-2.2.5-pp310-pypy310_pp73-macosx_14_0_x86_64.whl 0255732338c4fdd00996c0421884ea8a3651eea555c3a56b84892b66f696eb70 numpy-2.2.5-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl d2e3bdadaba0e040d1e7ab39db73e0afe2c74ae277f5614dad53eadbecbbb169 numpy-2.2.5-pp310-pypy310_pp73-win_amd64.whl a9c0d994680cd991b1cb772e8b297340085466a6fe964bc9d4e80f5e2f43c291 numpy-2.2.5.tar.gz ### [`v2.2.4`](https://github.com/numpy/numpy/releases/tag/v2.2.4): 2.2.4 (Mar 16, 2025) [Compare Source](https://github.com/numpy/numpy/compare/v2.2.3...v2.2.4) ### NumPy 2.2.4 Release Notes NumPy 2.2.4 is a patch release that fixes bugs found after the 2.2.3 release. There are a large number of typing improvements, the rest of the changes are the usual mix of bugfixes and platform maintenace. This release supports Python versions 3.10-3.13. #### Contributors A total of 15 people contributed to this release. People with a "+" by their names contributed a patch for the first time. - Abhishek Kumar - Andrej Zhilenkov - Andrew Nelson - Charles Harris - Giovanni Del Monte - Guan Ming(Wesley) Chiu + - Jonathan Albrecht + - Joren Hammudoglu - Mark Harfouche - Matthieu Darbois - Nathan Goldbaum - Pieter Eendebak - Sebastian Berg - Tyler Reddy - lvllvl + #### Pull requests merged A total of 17 pull requests were merged for this release. - [#&#8203;28333](https://github.com/numpy/numpy/pull/28333): MAINT: Prepare 2.2.x for further development. - [#&#8203;28348](https://github.com/numpy/numpy/pull/28348): TYP: fix positional- and keyword-only params in astype, cross... - [#&#8203;28377](https://github.com/numpy/numpy/pull/28377): MAINT: Update FreeBSD version and fix test failure - [#&#8203;28379](https://github.com/numpy/numpy/pull/28379): BUG: numpy.loadtxt reads only 50000 lines when skip_rows >= max_rows - [#&#8203;28385](https://github.com/numpy/numpy/pull/28385): BUG: Make np.nonzero threading safe - [#&#8203;28420](https://github.com/numpy/numpy/pull/28420): BUG: safer bincount casting (backport to 2.2.x) - [#&#8203;28422](https://github.com/numpy/numpy/pull/28422): BUG: Fix building on s390x with clang - [#&#8203;28423](https://github.com/numpy/numpy/pull/28423): CI: use QEMU 9.2.2 for Linux Qemu tests - [#&#8203;28424](https://github.com/numpy/numpy/pull/28424): BUG: skip legacy dtype multithreaded test on 32 bit runners - [#&#8203;28435](https://github.com/numpy/numpy/pull/28435): BUG: Fix searchsorted and CheckFromAny byte-swapping logic - [#&#8203;28449](https://github.com/numpy/numpy/pull/28449): BUG: sanity check `__array_interface__` number of dimensions - [#&#8203;28510](https://github.com/numpy/numpy/pull/28510): MAINT: Hide decorator from pytest traceback - [#&#8203;28512](https://github.com/numpy/numpy/pull/28512): TYP: Typing fixes backported from [#&#8203;28452](https://github.com/numpy/numpy/issues/28452), [#&#8203;28491](https://github.com/numpy/numpy/issues/28491), [#&#8203;28494](https://github.com/numpy/numpy/issues/28494) - [#&#8203;28521](https://github.com/numpy/numpy/pull/28521): TYP: Backport fixes from [#&#8203;28505](https://github.com/numpy/numpy/issues/28505), [#&#8203;28506](https://github.com/numpy/numpy/issues/28506), [#&#8203;28508](https://github.com/numpy/numpy/issues/28508), and [#&#8203;28511](https://github.com/numpy/numpy/issues/28511) - [#&#8203;28533](https://github.com/numpy/numpy/pull/28533): TYP: Backport typing fixes from main (2) - [#&#8203;28534](https://github.com/numpy/numpy/pull/28534): TYP: Backport typing fixes from main (3) - [#&#8203;28542](https://github.com/numpy/numpy/pull/28542): TYP: Backport typing fixes from main (4) #### Checksums ##### MD5 935928cbd2de140da097f6d5f4a01d72 numpy-2.2.4-cp310-cp310-macosx_10_9_x86_64.whl bf7fd01bb177885e920173b610c195d9 numpy-2.2.4-cp310-cp310-macosx_11_0_arm64.whl 826e52cd898567a0c446113ab7a7b362 numpy-2.2.4-cp310-cp310-macosx_14_0_arm64.whl 9982a91d7327aea541c24aff94d3e462 numpy-2.2.4-cp310-cp310-macosx_14_0_x86_64.whl 5bdf5b63f4ee01fa808d13043b2a2275 numpy-2.2.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 677b3031105e24eaee2e0e57d7c2a306 numpy-2.2.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl d857867787fe1eb236670e7fdb25f414 numpy-2.2.4-cp310-cp310-musllinux_1_2_aarch64.whl a5aff3a7eb2923878e67fbe1cd04a9e9 numpy-2.2.4-cp310-cp310-musllinux_1_2_x86_64.whl e00bd3ac85d8f34b46b7f97a8278aeb3 numpy-2.2.4-cp310-cp310-win32.whl e5cb2a5d14bccee316bb73173be125ec numpy-2.2.4-cp310-cp310-win_amd64.whl 494f60d8e1c3500413bd093bb3f486ea numpy-2.2.4-cp311-cp311-macosx_10_9_x86_64.whl a886a9f3e80a60ce6ba95b431578bbca numpy-2.2.4-cp311-cp311-macosx_11_0_arm64.whl 889f3b507bab9272d9b549780840a642 numpy-2.2.4-cp311-cp311-macosx_14_0_arm64.whl 059788668d2c4e9aace4858e77c099ed numpy-2.2.4-cp311-cp311-macosx_14_0_x86_64.whl db9ae978afb76a4bf79df0657a66aaeb numpy-2.2.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl e36963a4c177157dc7b0775c309fa5a8 numpy-2.2.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 3603e683878b74f38e5617f04ff6a369 numpy-2.2.4-cp311-cp311-musllinux_1_2_aarch64.whl afbc410fb9b42b19f4f7c81c21d6777f numpy-2.2.4-cp311-cp311-musllinux_1_2_x86_64.whl 33ff8081378188894097942f80c33e26 numpy-2.2.4-cp311-cp311-win32.whl 5b11fe8d26318d85e0bc577a654f6643 numpy-2.2.4-cp311-cp311-win_amd64.whl 91121787f396d3e98210de8b617e5d48 numpy-2.2.4-cp312-cp312-macosx_10_13_x86_64.whl c524d1020b4652aacf4477d1628fa1ba numpy-2.2.4-cp312-cp312-macosx_11_0_arm64.whl eb08f551bdd6772155bb39ac0da47479 numpy-2.2.4-cp312-cp312-macosx_14_0_arm64.whl 7cb37fc9145d0ebbea5666b4f9ed1027 numpy-2.2.4-cp312-cp312-macosx_14_0_x86_64.whl c4452a5dc557c291904b5c51a4148237 numpy-2.2.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl bd23a12ead870759f264160ab38b2c9d numpy-2.2.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 07b44109381985b48d1eef80feebc5ad numpy-2.2.4-cp312-cp312-musllinux_1_2_aarch64.whl 95f1a27d33106fa9f40ee0714681c840 numpy-2.2.4-cp312-cp312-musllinux_1_2_x86_64.whl 507e550a55b19dedf267b58a487ba0bc numpy-2.2.4-cp312-cp312-win32.whl be21ccbf8931e92ba1fdb2dc1250bf2a numpy-2.2.4-cp312-cp312-win_amd64.whl e94003c2b65d81b00203711c5c42fb8e numpy-2.2.4-cp313-cp313-macosx_10_13_x86_64.whl cf781fd5412ffd826e0436883452cc17 numpy-2.2.4-cp313-cp313-macosx_11_0_arm64.whl 92c9a30386a64f2deddad1db742bd296 numpy-2.2.4-cp313-cp313-macosx_14_0_arm64.whl 7fd16554fa0a15b7f99b1fabf1c4592c numpy-2.2.4-cp313-cp313-macosx_14_0_x86_64.whl 9293b0575a902b2d55c35567dee7679e numpy-2.2.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 9970699bd95e8a64a562b1e6328b83d0 numpy-2.2.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl e8597c611a919a8e88229d6889c1f86e numpy-2.2.4-cp313-cp313-musllinux_1_2_aarch64.whl 329288501f012606605bdbed368e58e9 numpy-2.2.4-cp313-cp313-musllinux_1_2_x86_64.whl 04bf8d0f6a9e279ab01df4ed0b4aeee1 numpy-2.2.4-cp313-cp313-win32.whl 66801fe84a436b7ed3be6e0082b86917 numpy-2.2.4-cp313-cp313-win_amd64.whl 3e2f31e01b45cd16a87b794477de3714 numpy-2.2.4-cp313-cp313t-macosx_10_13_x86_64.whl 7504018213a3a8fea7173e2c1d0fcfd1 numpy-2.2.4-cp313-cp313t-macosx_11_0_arm64.whl e299021397c3cdb941b7ffe77cf0fefe numpy-2.2.4-cp313-cp313t-macosx_14_0_arm64.whl 1cc2731a246079bcab361179f38e7ccb numpy-2.2.4-cp313-cp313t-macosx_14_0_x86_64.whl e6eccf936d25c9eda9df1a4d50ae2fdc numpy-2.2.4-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl ba825efd05cca6d56c3dca9f7f1f88e7 numpy-2.2.4-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 369eebec47c9c27cb4841a13e9522167 numpy-2.2.4-cp313-cp313t-musllinux_1_2_aarch64.whl 554dbfa52988d01f715cbe8d4da4b409 numpy-2.2.4-cp313-cp313t-musllinux_1_2_x86_64.whl 811d25a008c68086c9382487e9a4127a numpy-2.2.4-cp313-cp313t-win32.whl 893fd2fdd42f386e300bee885bbb7778 numpy-2.2.4-cp313-cp313t-win_amd64.whl 65e284546c5ee575eca0a3726c0a1d98 numpy-2.2.4-pp310-pypy310_pp73-macosx_10_15_x86_64.whl e4e73511eac8f1a10c6abbd6fa2fa0aa numpy-2.2.4-pp310-pypy310_pp73-macosx_14_0_x86_64.whl a884ed5263b91fa87b5e3d14caf955a5 numpy-2.2.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 7330087a6ad1527ae20a495e2fb3b357 numpy-2.2.4-pp310-pypy310_pp73-win_amd64.whl 56232f4a69b03dd7a87a55fffc5f2ebc numpy-2.2.4.tar.gz ##### SHA256 8146f3550d627252269ac42ae660281d673eb6f8b32f113538e0cc2a9aed42b9 numpy-2.2.4-cp310-cp310-macosx_10_9_x86_64.whl e642d86b8f956098b564a45e6f6ce68a22c2c97a04f5acd3f221f57b8cb850ae numpy-2.2.4-cp310-cp310-macosx_11_0_arm64.whl a84eda42bd12edc36eb5b53bbcc9b406820d3353f1994b6cfe453a33ff101775 numpy-2.2.4-cp310-cp310-macosx_14_0_arm64.whl 4ba5054787e89c59c593a4169830ab362ac2bee8a969249dc56e5d7d20ff8df9 numpy-2.2.4-cp310-cp310-macosx_14_0_x86_64.whl 7716e4a9b7af82c06a2543c53ca476fa0b57e4d760481273e09da04b74ee6ee2 numpy-2.2.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl adf8c1d66f432ce577d0197dceaac2ac00c0759f573f28516246351c58a85020 numpy-2.2.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 218f061d2faa73621fa23d6359442b0fc658d5b9a70801373625d958259eaca3 numpy-2.2.4-cp310-cp310-musllinux_1_2_aarch64.whl df2f57871a96bbc1b69733cd4c51dc33bea66146b8c63cacbfed73eec0883017 numpy-2.2.4-cp310-cp310-musllinux_1_2_x86_64.whl a0258ad1f44f138b791327961caedffbf9612bfa504ab9597157806faa95194a numpy-2.2.4-cp310-cp310-win32.whl 0d54974f9cf14acf49c60f0f7f4084b6579d24d439453d5fc5805d46a165b542 numpy-2.2.4-cp310-cp310-win_amd64.whl e9e0a277bb2eb5d8a7407e14688b85fd8ad628ee4e0c7930415687b6564207a4 numpy-2.2.4-cp311-cp311-macosx_10_9_x86_64.whl 9eeea959168ea555e556b8188da5fa7831e21d91ce031e95ce23747b7609f8a4 numpy-2.2.4-cp311-cp311-macosx_11_0_arm64.whl bd3ad3b0a40e713fc68f99ecfd07124195333f1e689387c180813f0e94309d6f numpy-2.2.4-cp311-cp311-macosx_14_0_arm64.whl cf28633d64294969c019c6df4ff37f5698e8326db68cc2b66576a51fad634880 numpy-2.2.4-cp311-cp311-macosx_14_0_x86_64.whl 2fa8fa7697ad1646b5c93de1719965844e004fcad23c91228aca1cf0800044a1 numpy-2.2.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl f4162988a360a29af158aeb4a2f4f09ffed6a969c9776f8f3bdee9b06a8ab7e5 numpy-2.2.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 892c10d6a73e0f14935c31229e03325a7b3093fafd6ce0af704be7f894d95687 numpy-2.2.4-cp311-cp311-musllinux_1_2_aarch64.whl db1f1c22173ac1c58db249ae48aa7ead29f534b9a948bc56828337aa84a32ed6 numpy-2.2.4-cp311-cp311-musllinux_1_2_x86_64.whl ea2bb7e2ae9e37d96835b3576a4fa4b3a97592fbea8ef7c3587078b0068b8f09 numpy-2.2.4-cp311-cp311-win32.whl f7de08cbe5551911886d1ab60de58448c6df0f67d9feb7d1fb21e9875ef95e91 numpy-2.2.4-cp311-cp311-win_amd64.whl a7b9084668aa0f64e64bd00d27ba5146ef1c3a8835f3bd912e7a9e01326804c4 numpy-2.2.4-cp312-cp312-macosx_10_13_x86_64.whl dbe512c511956b893d2dacd007d955a3f03d555ae05cfa3ff1c1ff6df8851854 numpy-2.2.4-cp312-cp312-macosx_11_0_arm64.whl bb649f8b207ab07caebba230d851b579a3c8711a851d29efe15008e31bb4de24 numpy-2.2.4-cp312-cp312-macosx_14_0_arm64.whl f34dc300df798742b3d06515aa2a0aee20941c13579d7a2f2e10af01ae4901ee numpy-2.2.4-cp312-cp312-macosx_14_0_x86_64.whl c3f7ac96b16955634e223b579a3e5798df59007ca43e8d451a0e6a50f6bfdfba numpy-2.2.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 4f92084defa704deadd4e0a5ab1dc52d8ac9e8a8ef617f3fbb853e79b0ea3592 numpy-2.2.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 7a4e84a6283b36632e2a5b56e121961f6542ab886bc9e12f8f9818b3c266bfbb numpy-2.2.4-cp312-cp312-musllinux_1_2_aarch64.whl 11c43995255eb4127115956495f43e9343736edb7fcdb0d973defd9de14cd84f numpy-2.2.4-cp312-cp312-musllinux_1_2_x86_64.whl 65ef3468b53269eb5fdb3a5c09508c032b793da03251d5f8722b1194f1790c00 numpy-2.2.4-cp312-cp312-win32.whl 2aad3c17ed2ff455b8eaafe06bcdae0062a1db77cb99f4b9cbb5f4ecb13c5146 numpy-2.2.4-cp312-cp312-win_amd64.whl 1cf4e5c6a278d620dee9ddeb487dc6a860f9b199eadeecc567f777daace1e9e7 numpy-2.2.4-cp313-cp313-macosx_10_13_x86_64.whl 1974afec0b479e50438fc3648974268f972e2d908ddb6d7fb634598cdb8260a0 numpy-2.2.4-cp313-cp313-macosx_11_0_arm64.whl 79bd5f0a02aa16808fcbc79a9a376a147cc1045f7dfe44c6e7d53fa8b8a79392 numpy-2.2.4-cp313-cp313-macosx_14_0_arm64.whl 3387dd7232804b341165cedcb90694565a6015433ee076c6754775e85d86f1fc numpy-2.2.4-cp313-cp313-macosx_14_0_x86_64.whl 6f527d8fdb0286fd2fd97a2a96c6be17ba4232da346931d967a0630050dfd298 numpy-2.2.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl bce43e386c16898b91e162e5baaad90c4b06f9dcbe36282490032cec98dc8ae7 numpy-2.2.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 31504f970f563d99f71a3512d0c01a645b692b12a63630d6aafa0939e52361e6 numpy-2.2.4-cp313-cp313-musllinux_1_2_aarch64.whl 81413336ef121a6ba746892fad881a83351ee3e1e4011f52e97fba79233611fd numpy-2.2.4-cp313-cp313-musllinux_1_2_x86_64.whl f486038e44caa08dbd97275a9a35a283a8f1d2f0ee60ac260a1790e76660833c numpy-2.2.4-cp313-cp313-win32.whl 207a2b8441cc8b6a2a78c9ddc64d00d20c303d79fba08c577752f080c4007ee3 numpy-2.2.4-cp313-cp313-win_amd64.whl 8120575cb4882318c791f839a4fd66161a6fa46f3f0a5e613071aae35b5dd8f8 numpy-2.2.4-cp313-cp313t-macosx_10_13_x86_64.whl a761ba0fa886a7bb33c6c8f6f20213735cb19642c580a931c625ee377ee8bd39 numpy-2.2.4-cp313-cp313t-macosx_11_0_arm64.whl ac0280f1ba4a4bfff363a99a6aceed4f8e123f8a9b234c89140f5e894e452ecd numpy-2.2.4-cp313-cp313t-macosx_14_0_arm64.whl 879cf3a9a2b53a4672a168c21375166171bc3932b7e21f622201811c43cdd3b0 numpy-2.2.4-cp313-cp313t-macosx_14_0_x86_64.whl f05d4198c1bacc9124018109c5fba2f3201dbe7ab6e92ff100494f236209c960 numpy-2.2.4-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl e2f085ce2e813a50dfd0e01fbfc0c12bbe5d2063d99f8b29da30e544fb6483b8 numpy-2.2.4-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 92bda934a791c01d6d9d8e038363c50918ef7c40601552a58ac84c9613a665bc numpy-2.2.4-cp313-cp313t-musllinux_1_2_aarch64.whl ee4d528022f4c5ff67332469e10efe06a267e32f4067dc76bb7e2cddf3cd25ff numpy-2.2.4-cp313-cp313t-musllinux_1_2_x86_64.whl 05c076d531e9998e7e694c36e8b349969c56eadd2cdcd07242958489d79a7286 numpy-2.2.4-cp313-cp313t-win32.whl 188dcbca89834cc2e14eb2f106c96d6d46f200fe0200310fc29089657379c58d numpy-2.2.4-cp313-cp313t-win_amd64.whl 7051ee569db5fbac144335e0f3b9c2337e0c8d5c9fee015f259a5bd70772b7e8 numpy-2.2.4-pp310-pypy310_pp73-macosx_10_15_x86_64.whl ab2939cd5bec30a7430cbdb2287b63151b77cf9624de0532d629c9a1c59b1d5c numpy-2.2.4-pp310-pypy310_pp73-macosx_14_0_x86_64.whl d0f35b19894a9e08639fd60a1ec1978cb7f5f7f1eace62f38dd36be8aecdef4d numpy-2.2.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl b4adfbbc64014976d2f91084915ca4e626fbf2057fb81af209c1a6d776d23e3d numpy-2.2.4-pp310-pypy310_pp73-win_amd64.whl 9ba03692a45d3eef66559efe1d1096c4b9b75c0986b5dff5530c378fb8331d4f numpy-2.2.4.tar.gz </details> --- ### Configuration 📅 **Schedule**: Branch creation - At any time (no schedule defined), Automerge - At any time (no schedule defined). 🚦 **Automerge**: Enabled. ♻ **Rebasing**: Whenever PR is behind base branch, or you tick the rebase/retry checkbox. 🔕 **Ignore**: Close this PR and you won't be reminded about this update again. --- - [ ] <!-- rebase-check -->If you want to rebase/retry this PR, check this box --- This PR has been generated by [Renovate Bot](https://github.com/renovatebot/renovate). <!--renovate-debug:eyJjcmVhdGVkSW5WZXIiOiIzOS4xNzkuMSIsInVwZGF0ZWRJblZlciI6IjQwLjEuMyIsInRhcmdldEJyYW5jaCI6Im1haW4iLCJsYWJlbHMiOltdfQ==-->
renovate_bot added 1 commit 2025-03-16 12:00:37 -07:00
renovate_bot scheduled this pull request to auto merge when all checks succeed 2025-03-16 12:00:38 -07:00
renovate_bot force-pushed renovate/numpy-2.x from d93d56e2fa to 9155bd7078 2025-05-03 16:59:05 -07:00 Compare
renovate_bot changed title from Update dependency numpy to v2.2.4 to Update dependency numpy to v2.2.5 2025-05-03 16:59:08 -07:00
renovate_bot merged commit 7dcb1f9f24 into main 2025-05-03 16:59:26 -07:00
renovate_bot deleted branch renovate/numpy-2.x 2025-05-03 16:59:26 -07:00
Sign in to join this conversation.
No reviewers
No labels
No milestone
No project
No assignees
1 participant
Notifications
Due date
The due date is invalid or out of range. Please use the format "yyyy-mm-dd".

No due date set.

Dependencies

No dependencies set.

Reference: buckbanzai/seattlecitylight-mastodon-bot#86
No description provided.