Update dependency numpy to v2.2.3 #79

Merged
renovate_bot merged 1 commit from renovate/numpy-2.x into main 2025-02-13 13:02:20 -08:00
Collaborator

This PR contains the following updates:

Package Update Change
numpy (changelog) patch ==2.2.2 -> ==2.2.3

Release Notes

numpy/numpy (numpy)

v2.2.3: 2.2.3 (Feb 13, 2025)

Compare Source

NumPy 2.2.3 Release Notes

NumPy 2.2.3 is a patch release that fixes bugs found after the 2.2.2
release. The majority of the changes are typing improvements and fixes
for free threaded Python. Both of those areas are still under
development, so if you discover new problems, please report them.

This release supports Python versions 3.10-3.13.

Contributors

A total of 9 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • !amotzop
  • Charles Harris
  • Chris Sidebottom
  • Joren Hammudoglu
  • Matthew Brett
  • Nathan Goldbaum
  • Raghuveer Devulapalli
  • Sebastian Berg
  • Yakov Danishevsky +

Pull requests merged

A total of 21 pull requests were merged for this release.

  • #​28185: MAINT: Prepare 2.2.x for further development
  • #​28201: BUG: fix data race in a more minimal way on stable branch
  • #​28208: BUG: Fix from_float_positional errors for huge pads
  • #​28209: BUG: fix data race in np.repeat
  • #​28212: MAINT: Use VQSORT_COMPILER_COMPATIBLE to determine if we should...
  • #​28224: MAINT: update highway to latest
  • #​28236: BUG: Add cpp atomic support (#​28234)
  • #​28237: BLD: Compile fix for clang-cl on WoA
  • #​28243: TYP: Avoid upcasting float64 in the set-ops
  • #​28249: BLD: better fix for clang / ARM compiles
  • #​28266: TYP: Fix timedelta64.__divmod__ and timedelta64.__mod__...
  • #​28274: TYP: Fixed missing typing information of set_printoptions
  • #​28278: BUG: backport resource cleanup bugfix from gh-28273
  • #​28282: BUG: fix incorrect bytes to stringdtype coercion
  • #​28283: TYP: Fix scalar constructors
  • #​28284: TYP: stub numpy.matlib
  • #​28285: TYP: stub the missing numpy.testing modules
  • #​28286: CI: Fix the github label for TYP: PR's and issues
  • #​28305: TYP: Backport typing updates from main
  • #​28321: BUG: fix race initializing legacy dtype casts
  • #​28324: CI: update test_moderately_small_alpha

Checksums

MD5
9cd8b5e358f89016f403a6c1a27e7e87  numpy-2.2.3-cp310-cp310-macosx_10_9_x86_64.whl
2818f5a9efcfc3bb6bf657137df26046  numpy-2.2.3-cp310-cp310-macosx_11_0_arm64.whl
6d65c6a336cfb69fe4ddd756cad73d55  numpy-2.2.3-cp310-cp310-macosx_14_0_arm64.whl
7f4cf33c634b33f633d4bf47f560a86d  numpy-2.2.3-cp310-cp310-macosx_14_0_x86_64.whl
3c04024badd42bfcc68c14f106efa93f  numpy-2.2.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
07658df1de0e1d3721de0aacff4313cd  numpy-2.2.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
3e753fc4b7c879b29442ee9bab25eddd  numpy-2.2.3-cp310-cp310-musllinux_1_2_aarch64.whl
d1811f1988d88b00825bc6e943d8e22d  numpy-2.2.3-cp310-cp310-musllinux_1_2_x86_64.whl
b5fe91363c16001ea30cbd5befbb0555  numpy-2.2.3-cp310-cp310-win32.whl
44dfe1df1640e4fe762bedad57cd7165  numpy-2.2.3-cp310-cp310-win_amd64.whl
6156418f596620b00a3c221baef02476  numpy-2.2.3-cp311-cp311-macosx_10_9_x86_64.whl
97b925bac245aad1297d22ad3cfaa74c  numpy-2.2.3-cp311-cp311-macosx_11_0_arm64.whl
3f05819fcb71df1d3093e5d1c041a4e9  numpy-2.2.3-cp311-cp311-macosx_14_0_arm64.whl
f6763893ba9a5739fefa0929fd152db2  numpy-2.2.3-cp311-cp311-macosx_14_0_x86_64.whl
e93cf6ed4e1a3f9a8009ee7f2fcb0da8  numpy-2.2.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
851dcbcbe90212c385dcdac1614cca83  numpy-2.2.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
9b27cf1d6319f70370f4b0af10c03f5c  numpy-2.2.3-cp311-cp311-musllinux_1_2_aarch64.whl
28d20c95ff23d27ae639b4960df777ec  numpy-2.2.3-cp311-cp311-musllinux_1_2_x86_64.whl
559fefe30c0043a088adeca90231b382  numpy-2.2.3-cp311-cp311-win32.whl
5e32a1cc3dcfe729f675784a53e4d553  numpy-2.2.3-cp311-cp311-win_amd64.whl
12134dcf62b2bca2eeebb7bbc45c2a71  numpy-2.2.3-cp312-cp312-macosx_10_13_x86_64.whl
c72318236531d3ca61d229eaf96f7d04  numpy-2.2.3-cp312-cp312-macosx_11_0_arm64.whl
1b807acc844c2ba5be7bc7586d4a3a6b  numpy-2.2.3-cp312-cp312-macosx_14_0_arm64.whl
810d4908371bb2f08b0c7b16d3f05970  numpy-2.2.3-cp312-cp312-macosx_14_0_x86_64.whl
bb918cedd0931cb68af9e77096dedf54  numpy-2.2.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
92c6c6c5b22b207425b329f061bd18fa  numpy-2.2.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
10d48fb9d86280db1afe7224b15a51af  numpy-2.2.3-cp312-cp312-musllinux_1_2_aarch64.whl
a73da0434a971b21d8a9c0596015d629  numpy-2.2.3-cp312-cp312-musllinux_1_2_x86_64.whl
c5f1e734c7d872e2f9af71d32e62d59c  numpy-2.2.3-cp312-cp312-win32.whl
884c1a89844f539ab15b7016a43d231c  numpy-2.2.3-cp312-cp312-win_amd64.whl
3a2de7f886cb756cf8d0375a36721926  numpy-2.2.3-cp313-cp313-macosx_10_13_x86_64.whl
c1fe5b6a9015c2877647419caa009be0  numpy-2.2.3-cp313-cp313-macosx_11_0_arm64.whl
bb3f3a69219bbcdb719bbe38e4e69f79  numpy-2.2.3-cp313-cp313-macosx_14_0_arm64.whl
8158c2e980a1cbfb4d98ff3a273bb2e9  numpy-2.2.3-cp313-cp313-macosx_14_0_x86_64.whl
4d3d9b0c14db955e4b1aa1a1971d2def  numpy-2.2.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
6575308269513900c94803258b89ac83  numpy-2.2.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
945b91c2093fed2a1f34597fc66e5a35  numpy-2.2.3-cp313-cp313-musllinux_1_2_aarch64.whl
c5867508607f75ed23426315a7ad86d7  numpy-2.2.3-cp313-cp313-musllinux_1_2_x86_64.whl
5a1497c262d9aa52ce6859a12a54ebbc  numpy-2.2.3-cp313-cp313-win32.whl
69c98e036d59eb74e4620c7649b5d7fc  numpy-2.2.3-cp313-cp313-win_amd64.whl
2535d7c0f98ad848bcf1f48f7c358e41  numpy-2.2.3-cp313-cp313t-macosx_10_13_x86_64.whl
aea9afa69d510ce905b2b8dbf0e33a11  numpy-2.2.3-cp313-cp313t-macosx_11_0_arm64.whl
cc5aceacd0a44a67cdd2cf8d5a446ca3  numpy-2.2.3-cp313-cp313t-macosx_14_0_arm64.whl
32eb2ed1e734ea26c90f75b1f5616564  numpy-2.2.3-cp313-cp313t-macosx_14_0_x86_64.whl
f1d85f322c3e85ef748c3e5594b94226  numpy-2.2.3-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
7f24ce01ad5c352c76614a12fa5e2319  numpy-2.2.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
62841d4b49c5a0cef2c2ba26a16f6959  numpy-2.2.3-cp313-cp313t-musllinux_1_2_aarch64.whl
d7b512f83999d05c47e55b931f2dcdfe  numpy-2.2.3-cp313-cp313t-musllinux_1_2_x86_64.whl
1dca2f20e0accc1741e5fb233ecf7dff  numpy-2.2.3-cp313-cp313t-win32.whl
347b71f0db5b49a25ef1ed677e47999b  numpy-2.2.3-cp313-cp313t-win_amd64.whl
3615d13c8c14c323aeda1c07d5a7fd55  numpy-2.2.3-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
f7d2ba950c5aa11c100bb6bf202d5799  numpy-2.2.3-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
b4336174c843c4943084e17945cd1165  numpy-2.2.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
0d856a89e028c393f8125739c56591e0  numpy-2.2.3-pp310-pypy310_pp73-win_amd64.whl
c6ee254bcdf1e2fdb13d87e0ee4166ba  numpy-2.2.3.tar.gz
SHA256
cbc6472e01952d3d1b2772b720428f8b90e2deea8344e854df22b0618e9cce71  numpy-2.2.3-cp310-cp310-macosx_10_9_x86_64.whl
cdfe0c22692a30cd830c0755746473ae66c4a8f2e7bd508b35fb3b6a0813d787  numpy-2.2.3-cp310-cp310-macosx_11_0_arm64.whl
e37242f5324ffd9f7ba5acf96d774f9276aa62a966c0bad8dae692deebec7716  numpy-2.2.3-cp310-cp310-macosx_14_0_arm64.whl
95172a21038c9b423e68be78fd0be6e1b97674cde269b76fe269a5dfa6fadf0b  numpy-2.2.3-cp310-cp310-macosx_14_0_x86_64.whl
d5b47c440210c5d1d67e1cf434124e0b5c395eee1f5806fdd89b553ed1acd0a3  numpy-2.2.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
0391ea3622f5c51a2e29708877d56e3d276827ac5447d7f45e9bc4ade8923c52  numpy-2.2.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
f6b3dfc7661f8842babd8ea07e9897fe3d9b69a1d7e5fbb743e4160f9387833b  numpy-2.2.3-cp310-cp310-musllinux_1_2_aarch64.whl
1ad78ce7f18ce4e7df1b2ea4019b5817a2f6a8a16e34ff2775f646adce0a5027  numpy-2.2.3-cp310-cp310-musllinux_1_2_x86_64.whl
5ebeb7ef54a7be11044c33a17b2624abe4307a75893c001a4800857956b41094  numpy-2.2.3-cp310-cp310-win32.whl
596140185c7fa113563c67c2e894eabe0daea18cf8e33851738c19f70ce86aeb  numpy-2.2.3-cp310-cp310-win_amd64.whl
16372619ee728ed67a2a606a614f56d3eabc5b86f8b615c79d01957062826ca8  numpy-2.2.3-cp311-cp311-macosx_10_9_x86_64.whl
5521a06a3148686d9269c53b09f7d399a5725c47bbb5b35747e1cb76326b714b  numpy-2.2.3-cp311-cp311-macosx_11_0_arm64.whl
7c8dde0ca2f77828815fd1aedfdf52e59071a5bae30dac3b4da2a335c672149a  numpy-2.2.3-cp311-cp311-macosx_14_0_arm64.whl
77974aba6c1bc26e3c205c2214f0d5b4305bdc719268b93e768ddb17e3fdd636  numpy-2.2.3-cp311-cp311-macosx_14_0_x86_64.whl
d42f9c36d06440e34226e8bd65ff065ca0963aeecada587b937011efa02cdc9d  numpy-2.2.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
f2712c5179f40af9ddc8f6727f2bd910ea0eb50206daea75f58ddd9fa3f715bb  numpy-2.2.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
c8b0451d2ec95010d1db8ca733afc41f659f425b7f608af569711097fd6014e2  numpy-2.2.3-cp311-cp311-musllinux_1_2_aarch64.whl
d9b4a8148c57ecac25a16b0e11798cbe88edf5237b0df99973687dd866f05e1b  numpy-2.2.3-cp311-cp311-musllinux_1_2_x86_64.whl
1f45315b2dc58d8a3e7754fe4e38b6fce132dab284a92851e41b2b344f6441c5  numpy-2.2.3-cp311-cp311-win32.whl
9f48ba6f6c13e5e49f3d3efb1b51c8193215c42ac82610a04624906a9270be6f  numpy-2.2.3-cp311-cp311-win_amd64.whl
12c045f43b1d2915eca6b880a7f4a256f59d62df4f044788c8ba67709412128d  numpy-2.2.3-cp312-cp312-macosx_10_13_x86_64.whl
87eed225fd415bbae787f93a457af7f5990b92a334e346f72070bf569b9c9c95  numpy-2.2.3-cp312-cp312-macosx_11_0_arm64.whl
712a64103d97c404e87d4d7c47fb0c7ff9acccc625ca2002848e0d53288b90ea  numpy-2.2.3-cp312-cp312-macosx_14_0_arm64.whl
a5ae282abe60a2db0fd407072aff4599c279bcd6e9a2475500fc35b00a57c532  numpy-2.2.3-cp312-cp312-macosx_14_0_x86_64.whl
5266de33d4c3420973cf9ae3b98b54a2a6d53a559310e3236c4b2b06b9c07d4e  numpy-2.2.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
3b787adbf04b0db1967798dba8da1af07e387908ed1553a0d6e74c084d1ceafe  numpy-2.2.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
34c1b7e83f94f3b564b35f480f5652a47007dd91f7c839f404d03279cc8dd021  numpy-2.2.3-cp312-cp312-musllinux_1_2_aarch64.whl
4d8335b5f1b6e2bce120d55fb17064b0262ff29b459e8493d1785c18ae2553b8  numpy-2.2.3-cp312-cp312-musllinux_1_2_x86_64.whl
4d9828d25fb246bedd31e04c9e75714a4087211ac348cb39c8c5f99dbb6683fe  numpy-2.2.3-cp312-cp312-win32.whl
83807d445817326b4bcdaaaf8e8e9f1753da04341eceec705c001ff342002e5d  numpy-2.2.3-cp312-cp312-win_amd64.whl
7bfdb06b395385ea9b91bf55c1adf1b297c9fdb531552845ff1d3ea6e40d5aba  numpy-2.2.3-cp313-cp313-macosx_10_13_x86_64.whl
23c9f4edbf4c065fddb10a4f6e8b6a244342d95966a48820c614891e5059bb50  numpy-2.2.3-cp313-cp313-macosx_11_0_arm64.whl
a0c03b6be48aaf92525cccf393265e02773be8fd9551a2f9adbe7db1fa2b60f1  numpy-2.2.3-cp313-cp313-macosx_14_0_arm64.whl
2376e317111daa0a6739e50f7ee2a6353f768489102308b0d98fcf4a04f7f3b5  numpy-2.2.3-cp313-cp313-macosx_14_0_x86_64.whl
8fb62fe3d206d72fe1cfe31c4a1106ad2b136fcc1606093aeab314f02930fdf2  numpy-2.2.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
52659ad2534427dffcc36aac76bebdd02b67e3b7a619ac67543bc9bfe6b7cdb1  numpy-2.2.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
1b416af7d0ed3271cad0f0a0d0bee0911ed7eba23e66f8424d9f3dfcdcae1304  numpy-2.2.3-cp313-cp313-musllinux_1_2_aarch64.whl
1402da8e0f435991983d0a9708b779f95a8c98c6b18a171b9f1be09005e64d9d  numpy-2.2.3-cp313-cp313-musllinux_1_2_x86_64.whl
136553f123ee2951bfcfbc264acd34a2fc2f29d7cdf610ce7daf672b6fbaa693  numpy-2.2.3-cp313-cp313-win32.whl
5b732c8beef1d7bc2d9e476dbba20aaff6167bf205ad9aa8d30913859e82884b  numpy-2.2.3-cp313-cp313-win_amd64.whl
435e7a933b9fda8126130b046975a968cc2d833b505475e588339e09f7672890  numpy-2.2.3-cp313-cp313t-macosx_10_13_x86_64.whl
7678556eeb0152cbd1522b684dcd215250885993dd00adb93679ec3c0e6e091c  numpy-2.2.3-cp313-cp313t-macosx_11_0_arm64.whl
2e8da03bd561504d9b20e7a12340870dfc206c64ea59b4cfee9fceb95070ee94  numpy-2.2.3-cp313-cp313t-macosx_14_0_arm64.whl
c9aa4496fd0e17e3843399f533d62857cef5900facf93e735ef65aa4bbc90ef0  numpy-2.2.3-cp313-cp313t-macosx_14_0_x86_64.whl
f4ca91d61a4bf61b0f2228f24bbfa6a9facd5f8af03759fe2a655c50ae2c6610  numpy-2.2.3-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
deaa09cd492e24fd9b15296844c0ad1b3c976da7907e1c1ed3a0ad21dded6f76  numpy-2.2.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
246535e2f7496b7ac85deffe932896a3577be7af8fb7eebe7146444680297e9a  numpy-2.2.3-cp313-cp313t-musllinux_1_2_aarch64.whl
daf43a3d1ea699402c5a850e5313680ac355b4adc9770cd5cfc2940e7861f1bf  numpy-2.2.3-cp313-cp313t-musllinux_1_2_x86_64.whl
cf802eef1f0134afb81fef94020351be4fe1d6681aadf9c5e862af6602af64ef  numpy-2.2.3-cp313-cp313t-win32.whl
aee2512827ceb6d7f517c8b85aa5d3923afe8fc7a57d028cffcd522f1c6fd082  numpy-2.2.3-cp313-cp313t-win_amd64.whl
3c2ec8a0f51d60f1e9c0c5ab116b7fc104b165ada3f6c58abf881cb2eb16044d  numpy-2.2.3-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
ed2cf9ed4e8ebc3b754d398cba12f24359f018b416c380f577bbae112ca52fc9  numpy-2.2.3-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
39261798d208c3095ae4f7bc8eaeb3481ea8c6e03dc48028057d3cbdbdb8937e  numpy-2.2.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
783145835458e60fa97afac25d511d00a1eca94d4a8f3ace9fe2043003c678e4  numpy-2.2.3-pp310-pypy310_pp73-win_amd64.whl
dbdc15f0c81611925f382dfa97b3bd0bc2c1ce19d4fe50482cb0ddc12ba30020  numpy-2.2.3.tar.gz

Configuration

📅 Schedule: Branch creation - At any time (no schedule defined), Automerge - At any time (no schedule defined).

🚦 Automerge: Enabled.

Rebasing: Whenever PR is behind base branch, or you tick the rebase/retry checkbox.

🔕 Ignore: Close this PR and you won't be reminded about this update again.


  • If you want to rebase/retry this PR, check this box

This PR has been generated by Renovate Bot.

This PR contains the following updates: | Package | Update | Change | |---|---|---| | [numpy](https://github.com/numpy/numpy) ([changelog](https://numpy.org/doc/stable/release)) | patch | `==2.2.2` -> `==2.2.3` | --- ### Release Notes <details> <summary>numpy/numpy (numpy)</summary> ### [`v2.2.3`](https://github.com/numpy/numpy/releases/tag/v2.2.3): 2.2.3 (Feb 13, 2025) [Compare Source](https://github.com/numpy/numpy/compare/v2.2.2...v2.2.3) ### NumPy 2.2.3 Release Notes NumPy 2.2.3 is a patch release that fixes bugs found after the 2.2.2 release. The majority of the changes are typing improvements and fixes for free threaded Python. Both of those areas are still under development, so if you discover new problems, please report them. This release supports Python versions 3.10-3.13. #### Contributors A total of 9 people contributed to this release. People with a "+" by their names contributed a patch for the first time. - !amotzop - Charles Harris - Chris Sidebottom - Joren Hammudoglu - Matthew Brett - Nathan Goldbaum - Raghuveer Devulapalli - Sebastian Berg - Yakov Danishevsky + #### Pull requests merged A total of 21 pull requests were merged for this release. - [#&#8203;28185](https://github.com/numpy/numpy/pull/28185): MAINT: Prepare 2.2.x for further development - [#&#8203;28201](https://github.com/numpy/numpy/pull/28201): BUG: fix data race in a more minimal way on stable branch - [#&#8203;28208](https://github.com/numpy/numpy/pull/28208): BUG: Fix `from_float_positional` errors for huge pads - [#&#8203;28209](https://github.com/numpy/numpy/pull/28209): BUG: fix data race in np.repeat - [#&#8203;28212](https://github.com/numpy/numpy/pull/28212): MAINT: Use VQSORT_COMPILER_COMPATIBLE to determine if we should... - [#&#8203;28224](https://github.com/numpy/numpy/pull/28224): MAINT: update highway to latest - [#&#8203;28236](https://github.com/numpy/numpy/pull/28236): BUG: Add cpp atomic support ([#&#8203;28234](https://github.com/numpy/numpy/issues/28234)) - [#&#8203;28237](https://github.com/numpy/numpy/pull/28237): BLD: Compile fix for clang-cl on WoA - [#&#8203;28243](https://github.com/numpy/numpy/pull/28243): TYP: Avoid upcasting `float64` in the set-ops - [#&#8203;28249](https://github.com/numpy/numpy/pull/28249): BLD: better fix for clang / ARM compiles - [#&#8203;28266](https://github.com/numpy/numpy/pull/28266): TYP: Fix `timedelta64.__divmod__` and `timedelta64.__mod__`... - [#&#8203;28274](https://github.com/numpy/numpy/pull/28274): TYP: Fixed missing typing information of set_printoptions - [#&#8203;28278](https://github.com/numpy/numpy/pull/28278): BUG: backport resource cleanup bugfix from [gh-28273](https://github.com/numpy/numpy/issues/28273) - [#&#8203;28282](https://github.com/numpy/numpy/pull/28282): BUG: fix incorrect bytes to stringdtype coercion - [#&#8203;28283](https://github.com/numpy/numpy/pull/28283): TYP: Fix scalar constructors - [#&#8203;28284](https://github.com/numpy/numpy/pull/28284): TYP: stub `numpy.matlib` - [#&#8203;28285](https://github.com/numpy/numpy/pull/28285): TYP: stub the missing `numpy.testing` modules - [#&#8203;28286](https://github.com/numpy/numpy/pull/28286): CI: Fix the github label for `TYP:` PR's and issues - [#&#8203;28305](https://github.com/numpy/numpy/pull/28305): TYP: Backport typing updates from main - [#&#8203;28321](https://github.com/numpy/numpy/pull/28321): BUG: fix race initializing legacy dtype casts - [#&#8203;28324](https://github.com/numpy/numpy/pull/28324): CI: update test_moderately_small_alpha #### Checksums ##### MD5 9cd8b5e358f89016f403a6c1a27e7e87 numpy-2.2.3-cp310-cp310-macosx_10_9_x86_64.whl 2818f5a9efcfc3bb6bf657137df26046 numpy-2.2.3-cp310-cp310-macosx_11_0_arm64.whl 6d65c6a336cfb69fe4ddd756cad73d55 numpy-2.2.3-cp310-cp310-macosx_14_0_arm64.whl 7f4cf33c634b33f633d4bf47f560a86d numpy-2.2.3-cp310-cp310-macosx_14_0_x86_64.whl 3c04024badd42bfcc68c14f106efa93f numpy-2.2.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 07658df1de0e1d3721de0aacff4313cd numpy-2.2.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 3e753fc4b7c879b29442ee9bab25eddd numpy-2.2.3-cp310-cp310-musllinux_1_2_aarch64.whl d1811f1988d88b00825bc6e943d8e22d numpy-2.2.3-cp310-cp310-musllinux_1_2_x86_64.whl b5fe91363c16001ea30cbd5befbb0555 numpy-2.2.3-cp310-cp310-win32.whl 44dfe1df1640e4fe762bedad57cd7165 numpy-2.2.3-cp310-cp310-win_amd64.whl 6156418f596620b00a3c221baef02476 numpy-2.2.3-cp311-cp311-macosx_10_9_x86_64.whl 97b925bac245aad1297d22ad3cfaa74c numpy-2.2.3-cp311-cp311-macosx_11_0_arm64.whl 3f05819fcb71df1d3093e5d1c041a4e9 numpy-2.2.3-cp311-cp311-macosx_14_0_arm64.whl f6763893ba9a5739fefa0929fd152db2 numpy-2.2.3-cp311-cp311-macosx_14_0_x86_64.whl e93cf6ed4e1a3f9a8009ee7f2fcb0da8 numpy-2.2.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 851dcbcbe90212c385dcdac1614cca83 numpy-2.2.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 9b27cf1d6319f70370f4b0af10c03f5c numpy-2.2.3-cp311-cp311-musllinux_1_2_aarch64.whl 28d20c95ff23d27ae639b4960df777ec numpy-2.2.3-cp311-cp311-musllinux_1_2_x86_64.whl 559fefe30c0043a088adeca90231b382 numpy-2.2.3-cp311-cp311-win32.whl 5e32a1cc3dcfe729f675784a53e4d553 numpy-2.2.3-cp311-cp311-win_amd64.whl 12134dcf62b2bca2eeebb7bbc45c2a71 numpy-2.2.3-cp312-cp312-macosx_10_13_x86_64.whl c72318236531d3ca61d229eaf96f7d04 numpy-2.2.3-cp312-cp312-macosx_11_0_arm64.whl 1b807acc844c2ba5be7bc7586d4a3a6b numpy-2.2.3-cp312-cp312-macosx_14_0_arm64.whl 810d4908371bb2f08b0c7b16d3f05970 numpy-2.2.3-cp312-cp312-macosx_14_0_x86_64.whl bb918cedd0931cb68af9e77096dedf54 numpy-2.2.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 92c6c6c5b22b207425b329f061bd18fa numpy-2.2.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 10d48fb9d86280db1afe7224b15a51af numpy-2.2.3-cp312-cp312-musllinux_1_2_aarch64.whl a73da0434a971b21d8a9c0596015d629 numpy-2.2.3-cp312-cp312-musllinux_1_2_x86_64.whl c5f1e734c7d872e2f9af71d32e62d59c numpy-2.2.3-cp312-cp312-win32.whl 884c1a89844f539ab15b7016a43d231c numpy-2.2.3-cp312-cp312-win_amd64.whl 3a2de7f886cb756cf8d0375a36721926 numpy-2.2.3-cp313-cp313-macosx_10_13_x86_64.whl c1fe5b6a9015c2877647419caa009be0 numpy-2.2.3-cp313-cp313-macosx_11_0_arm64.whl bb3f3a69219bbcdb719bbe38e4e69f79 numpy-2.2.3-cp313-cp313-macosx_14_0_arm64.whl 8158c2e980a1cbfb4d98ff3a273bb2e9 numpy-2.2.3-cp313-cp313-macosx_14_0_x86_64.whl 4d3d9b0c14db955e4b1aa1a1971d2def numpy-2.2.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 6575308269513900c94803258b89ac83 numpy-2.2.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 945b91c2093fed2a1f34597fc66e5a35 numpy-2.2.3-cp313-cp313-musllinux_1_2_aarch64.whl c5867508607f75ed23426315a7ad86d7 numpy-2.2.3-cp313-cp313-musllinux_1_2_x86_64.whl 5a1497c262d9aa52ce6859a12a54ebbc numpy-2.2.3-cp313-cp313-win32.whl 69c98e036d59eb74e4620c7649b5d7fc numpy-2.2.3-cp313-cp313-win_amd64.whl 2535d7c0f98ad848bcf1f48f7c358e41 numpy-2.2.3-cp313-cp313t-macosx_10_13_x86_64.whl aea9afa69d510ce905b2b8dbf0e33a11 numpy-2.2.3-cp313-cp313t-macosx_11_0_arm64.whl cc5aceacd0a44a67cdd2cf8d5a446ca3 numpy-2.2.3-cp313-cp313t-macosx_14_0_arm64.whl 32eb2ed1e734ea26c90f75b1f5616564 numpy-2.2.3-cp313-cp313t-macosx_14_0_x86_64.whl f1d85f322c3e85ef748c3e5594b94226 numpy-2.2.3-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 7f24ce01ad5c352c76614a12fa5e2319 numpy-2.2.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 62841d4b49c5a0cef2c2ba26a16f6959 numpy-2.2.3-cp313-cp313t-musllinux_1_2_aarch64.whl d7b512f83999d05c47e55b931f2dcdfe numpy-2.2.3-cp313-cp313t-musllinux_1_2_x86_64.whl 1dca2f20e0accc1741e5fb233ecf7dff numpy-2.2.3-cp313-cp313t-win32.whl 347b71f0db5b49a25ef1ed677e47999b numpy-2.2.3-cp313-cp313t-win_amd64.whl 3615d13c8c14c323aeda1c07d5a7fd55 numpy-2.2.3-pp310-pypy310_pp73-macosx_10_15_x86_64.whl f7d2ba950c5aa11c100bb6bf202d5799 numpy-2.2.3-pp310-pypy310_pp73-macosx_14_0_x86_64.whl b4336174c843c4943084e17945cd1165 numpy-2.2.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 0d856a89e028c393f8125739c56591e0 numpy-2.2.3-pp310-pypy310_pp73-win_amd64.whl c6ee254bcdf1e2fdb13d87e0ee4166ba numpy-2.2.3.tar.gz ##### SHA256 cbc6472e01952d3d1b2772b720428f8b90e2deea8344e854df22b0618e9cce71 numpy-2.2.3-cp310-cp310-macosx_10_9_x86_64.whl cdfe0c22692a30cd830c0755746473ae66c4a8f2e7bd508b35fb3b6a0813d787 numpy-2.2.3-cp310-cp310-macosx_11_0_arm64.whl e37242f5324ffd9f7ba5acf96d774f9276aa62a966c0bad8dae692deebec7716 numpy-2.2.3-cp310-cp310-macosx_14_0_arm64.whl 95172a21038c9b423e68be78fd0be6e1b97674cde269b76fe269a5dfa6fadf0b numpy-2.2.3-cp310-cp310-macosx_14_0_x86_64.whl d5b47c440210c5d1d67e1cf434124e0b5c395eee1f5806fdd89b553ed1acd0a3 numpy-2.2.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 0391ea3622f5c51a2e29708877d56e3d276827ac5447d7f45e9bc4ade8923c52 numpy-2.2.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl f6b3dfc7661f8842babd8ea07e9897fe3d9b69a1d7e5fbb743e4160f9387833b numpy-2.2.3-cp310-cp310-musllinux_1_2_aarch64.whl 1ad78ce7f18ce4e7df1b2ea4019b5817a2f6a8a16e34ff2775f646adce0a5027 numpy-2.2.3-cp310-cp310-musllinux_1_2_x86_64.whl 5ebeb7ef54a7be11044c33a17b2624abe4307a75893c001a4800857956b41094 numpy-2.2.3-cp310-cp310-win32.whl 596140185c7fa113563c67c2e894eabe0daea18cf8e33851738c19f70ce86aeb numpy-2.2.3-cp310-cp310-win_amd64.whl 16372619ee728ed67a2a606a614f56d3eabc5b86f8b615c79d01957062826ca8 numpy-2.2.3-cp311-cp311-macosx_10_9_x86_64.whl 5521a06a3148686d9269c53b09f7d399a5725c47bbb5b35747e1cb76326b714b numpy-2.2.3-cp311-cp311-macosx_11_0_arm64.whl 7c8dde0ca2f77828815fd1aedfdf52e59071a5bae30dac3b4da2a335c672149a numpy-2.2.3-cp311-cp311-macosx_14_0_arm64.whl 77974aba6c1bc26e3c205c2214f0d5b4305bdc719268b93e768ddb17e3fdd636 numpy-2.2.3-cp311-cp311-macosx_14_0_x86_64.whl d42f9c36d06440e34226e8bd65ff065ca0963aeecada587b937011efa02cdc9d numpy-2.2.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl f2712c5179f40af9ddc8f6727f2bd910ea0eb50206daea75f58ddd9fa3f715bb numpy-2.2.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl c8b0451d2ec95010d1db8ca733afc41f659f425b7f608af569711097fd6014e2 numpy-2.2.3-cp311-cp311-musllinux_1_2_aarch64.whl d9b4a8148c57ecac25a16b0e11798cbe88edf5237b0df99973687dd866f05e1b numpy-2.2.3-cp311-cp311-musllinux_1_2_x86_64.whl 1f45315b2dc58d8a3e7754fe4e38b6fce132dab284a92851e41b2b344f6441c5 numpy-2.2.3-cp311-cp311-win32.whl 9f48ba6f6c13e5e49f3d3efb1b51c8193215c42ac82610a04624906a9270be6f numpy-2.2.3-cp311-cp311-win_amd64.whl 12c045f43b1d2915eca6b880a7f4a256f59d62df4f044788c8ba67709412128d numpy-2.2.3-cp312-cp312-macosx_10_13_x86_64.whl 87eed225fd415bbae787f93a457af7f5990b92a334e346f72070bf569b9c9c95 numpy-2.2.3-cp312-cp312-macosx_11_0_arm64.whl 712a64103d97c404e87d4d7c47fb0c7ff9acccc625ca2002848e0d53288b90ea numpy-2.2.3-cp312-cp312-macosx_14_0_arm64.whl a5ae282abe60a2db0fd407072aff4599c279bcd6e9a2475500fc35b00a57c532 numpy-2.2.3-cp312-cp312-macosx_14_0_x86_64.whl 5266de33d4c3420973cf9ae3b98b54a2a6d53a559310e3236c4b2b06b9c07d4e numpy-2.2.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 3b787adbf04b0db1967798dba8da1af07e387908ed1553a0d6e74c084d1ceafe numpy-2.2.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 34c1b7e83f94f3b564b35f480f5652a47007dd91f7c839f404d03279cc8dd021 numpy-2.2.3-cp312-cp312-musllinux_1_2_aarch64.whl 4d8335b5f1b6e2bce120d55fb17064b0262ff29b459e8493d1785c18ae2553b8 numpy-2.2.3-cp312-cp312-musllinux_1_2_x86_64.whl 4d9828d25fb246bedd31e04c9e75714a4087211ac348cb39c8c5f99dbb6683fe numpy-2.2.3-cp312-cp312-win32.whl 83807d445817326b4bcdaaaf8e8e9f1753da04341eceec705c001ff342002e5d numpy-2.2.3-cp312-cp312-win_amd64.whl 7bfdb06b395385ea9b91bf55c1adf1b297c9fdb531552845ff1d3ea6e40d5aba numpy-2.2.3-cp313-cp313-macosx_10_13_x86_64.whl 23c9f4edbf4c065fddb10a4f6e8b6a244342d95966a48820c614891e5059bb50 numpy-2.2.3-cp313-cp313-macosx_11_0_arm64.whl a0c03b6be48aaf92525cccf393265e02773be8fd9551a2f9adbe7db1fa2b60f1 numpy-2.2.3-cp313-cp313-macosx_14_0_arm64.whl 2376e317111daa0a6739e50f7ee2a6353f768489102308b0d98fcf4a04f7f3b5 numpy-2.2.3-cp313-cp313-macosx_14_0_x86_64.whl 8fb62fe3d206d72fe1cfe31c4a1106ad2b136fcc1606093aeab314f02930fdf2 numpy-2.2.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 52659ad2534427dffcc36aac76bebdd02b67e3b7a619ac67543bc9bfe6b7cdb1 numpy-2.2.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 1b416af7d0ed3271cad0f0a0d0bee0911ed7eba23e66f8424d9f3dfcdcae1304 numpy-2.2.3-cp313-cp313-musllinux_1_2_aarch64.whl 1402da8e0f435991983d0a9708b779f95a8c98c6b18a171b9f1be09005e64d9d numpy-2.2.3-cp313-cp313-musllinux_1_2_x86_64.whl 136553f123ee2951bfcfbc264acd34a2fc2f29d7cdf610ce7daf672b6fbaa693 numpy-2.2.3-cp313-cp313-win32.whl 5b732c8beef1d7bc2d9e476dbba20aaff6167bf205ad9aa8d30913859e82884b numpy-2.2.3-cp313-cp313-win_amd64.whl 435e7a933b9fda8126130b046975a968cc2d833b505475e588339e09f7672890 numpy-2.2.3-cp313-cp313t-macosx_10_13_x86_64.whl 7678556eeb0152cbd1522b684dcd215250885993dd00adb93679ec3c0e6e091c numpy-2.2.3-cp313-cp313t-macosx_11_0_arm64.whl 2e8da03bd561504d9b20e7a12340870dfc206c64ea59b4cfee9fceb95070ee94 numpy-2.2.3-cp313-cp313t-macosx_14_0_arm64.whl c9aa4496fd0e17e3843399f533d62857cef5900facf93e735ef65aa4bbc90ef0 numpy-2.2.3-cp313-cp313t-macosx_14_0_x86_64.whl f4ca91d61a4bf61b0f2228f24bbfa6a9facd5f8af03759fe2a655c50ae2c6610 numpy-2.2.3-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl deaa09cd492e24fd9b15296844c0ad1b3c976da7907e1c1ed3a0ad21dded6f76 numpy-2.2.3-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 246535e2f7496b7ac85deffe932896a3577be7af8fb7eebe7146444680297e9a numpy-2.2.3-cp313-cp313t-musllinux_1_2_aarch64.whl daf43a3d1ea699402c5a850e5313680ac355b4adc9770cd5cfc2940e7861f1bf numpy-2.2.3-cp313-cp313t-musllinux_1_2_x86_64.whl cf802eef1f0134afb81fef94020351be4fe1d6681aadf9c5e862af6602af64ef numpy-2.2.3-cp313-cp313t-win32.whl aee2512827ceb6d7f517c8b85aa5d3923afe8fc7a57d028cffcd522f1c6fd082 numpy-2.2.3-cp313-cp313t-win_amd64.whl 3c2ec8a0f51d60f1e9c0c5ab116b7fc104b165ada3f6c58abf881cb2eb16044d numpy-2.2.3-pp310-pypy310_pp73-macosx_10_15_x86_64.whl ed2cf9ed4e8ebc3b754d398cba12f24359f018b416c380f577bbae112ca52fc9 numpy-2.2.3-pp310-pypy310_pp73-macosx_14_0_x86_64.whl 39261798d208c3095ae4f7bc8eaeb3481ea8c6e03dc48028057d3cbdbdb8937e numpy-2.2.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 783145835458e60fa97afac25d511d00a1eca94d4a8f3ace9fe2043003c678e4 numpy-2.2.3-pp310-pypy310_pp73-win_amd64.whl dbdc15f0c81611925f382dfa97b3bd0bc2c1ce19d4fe50482cb0ddc12ba30020 numpy-2.2.3.tar.gz </details> --- ### Configuration 📅 **Schedule**: Branch creation - At any time (no schedule defined), Automerge - At any time (no schedule defined). 🚦 **Automerge**: Enabled. ♻ **Rebasing**: Whenever PR is behind base branch, or you tick the rebase/retry checkbox. 🔕 **Ignore**: Close this PR and you won't be reminded about this update again. --- - [ ] <!-- rebase-check -->If you want to rebase/retry this PR, check this box --- This PR has been generated by [Renovate Bot](https://github.com/renovatebot/renovate). <!--renovate-debug:eyJjcmVhdGVkSW5WZXIiOiIzOS4zMS40IiwidXBkYXRlZEluVmVyIjoiMzkuMzEuNCIsInRhcmdldEJyYW5jaCI6Im1haW4iLCJsYWJlbHMiOltdfQ==-->
renovate_bot added 1 commit 2025-02-13 13:00:35 -08:00
Update dependency numpy to v2.2.3
Some checks failed
ci/woodpecker/pr/docker-buildx Pipeline failed
ci/woodpecker/pr/lint Pipeline was successful
ci/woodpecker/pr/vulnerability-scan Pipeline was successful
ci/woodpecker/pull_request_closed/lint Pipeline was successful
ci/woodpecker/pull_request_closed/vulnerability-scan Pipeline was successful
3964d37555
renovate_bot scheduled this pull request to auto merge when all checks succeed 2025-02-13 13:00:36 -08:00
renovate_bot merged commit 32bf7e3786 into main 2025-02-13 13:02:20 -08:00
Sign in to join this conversation.
No reviewers
No labels
No milestone
No project
No assignees
1 participant
Notifications
Due date
The due date is invalid or out of range. Please use the format "yyyy-mm-dd".

No due date set.

Dependencies

No dependencies set.

Reference: buckbanzai/seattlecitylight-mastodon-bot#79
No description provided.