Update dependency numpy to v2.2.1 #72

Merged
renovate_bot merged 1 commit from renovate/numpy-2.x into main 2025-01-11 08:49:10 -08:00
Collaborator

This PR contains the following updates:

Package Update Change
numpy (changelog) minor ==2.1.3 -> ==2.2.1

Release Notes

numpy/numpy (numpy)

v2.2.1: 2.2.1 (DEC 21, 2024)

Compare Source

NumPy 2.2.1 Release Notes

NumPy 2.2.1 is a patch release following 2.2.0. It fixes bugs found
after the 2.2.0 release and has several maintenance pins to work around
upstream changes.

There was some breakage in downstream projects following the 2.2.0
release due to updates to NumPy typing. Because of problems due to MyPy
defects, we recommend using basedpyright for type checking, it can be
installed from PyPI. The Pylance extension for Visual Studio Code is
also based on Pyright. Problems that persist when using basedpyright
should be reported as issues on the NumPy github site.

This release supports Python 3.10-3.13.

Contributors

A total of 9 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Charles Harris
  • Joren Hammudoglu
  • Matti Picus
  • Nathan Goldbaum
  • Peter Hawkins
  • Simon Altrogge
  • Thomas A Caswell
  • Warren Weckesser
  • Yang Wang +

Pull requests merged

A total of 12 pull requests were merged for this release.

  • #​27935: MAINT: Prepare 2.2.x for further development
  • #​27950: TEST: cleanups
  • #​27958: BUG: fix use-after-free error in npy_hashtable.cpp (#​27955)
  • #​27959: BLD: add missing include
  • #​27982: BUG:fix compile error libatomic link test to meson.build
  • #​27990: TYP: Fix falsely rejected value types in ndarray.__setitem__
  • #​27991: MAINT: Don't wrap #include <Python.h> with extern "C"
  • #​27993: BUG: Fix segfault in stringdtype lexsort
  • #​28006: MAINT: random: Tweak module code in mtrand.pyx to fix a Cython...
  • #​28007: BUG: Cython API was missing NPY_UINTP.
  • #​28021: CI: pin scipy-doctest to 1.5.1
  • #​28044: TYP: allow None in operand sequence of nditer

Checksums

MD5
d3032be00b974d44aae687fd78a897b4  numpy-2.2.1-cp310-cp310-macosx_10_9_x86_64.whl
49863a39471cf191402da96512e52cb6  numpy-2.2.1-cp310-cp310-macosx_11_0_arm64.whl
31c912e2fa723b877f2d710c26332927  numpy-2.2.1-cp310-cp310-macosx_14_0_arm64.whl
95af4f6b620c76f9ccb8c5693c99737d  numpy-2.2.1-cp310-cp310-macosx_14_0_x86_64.whl
c1b113ad487a3bece6d7a70e0cf70f17  numpy-2.2.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
e93369ddbb637d9d5a820b2bb79588c4  numpy-2.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b3de0a2c345541d2c9a322df360ca497  numpy-2.2.1-cp310-cp310-musllinux_1_2_aarch64.whl
e3e62b93245d9e37cc03ec3cfaf68118  numpy-2.2.1-cp310-cp310-musllinux_1_2_x86_64.whl
004063642d3c3792a3f5ff0241a3fa0f  numpy-2.2.1-cp310-cp310-win32.whl
462b0704ebfd79120edfe6431adc57f4  numpy-2.2.1-cp310-cp310-win_amd64.whl
a739a2dfbceaa1140e564424b2a57540  numpy-2.2.1-cp311-cp311-macosx_10_9_x86_64.whl
91731d46f4ce4b04db512400f4e76ccb  numpy-2.2.1-cp311-cp311-macosx_11_0_arm64.whl
93f50db664a6986c2ebed3ceb588f7cc  numpy-2.2.1-cp311-cp311-macosx_14_0_arm64.whl
8cc0d82b938d71f45a67c74e07ddc7fd  numpy-2.2.1-cp311-cp311-macosx_14_0_x86_64.whl
fc7b253096fc566bbcbadfdf6b034f1b  numpy-2.2.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
b88238965c708578f2c198d1c6e2cf70  numpy-2.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
df20d649bb023f98e487b229f01e9708  numpy-2.2.1-cp311-cp311-musllinux_1_2_aarch64.whl
e23d2bfbdb1bd1b2872c9e6e15f64dca  numpy-2.2.1-cp311-cp311-musllinux_1_2_x86_64.whl
cce4ebb9afc1470db243c2ab4cc6639b  numpy-2.2.1-cp311-cp311-win32.whl
c96783ee8ad6ce1efee94821929a12f5  numpy-2.2.1-cp311-cp311-win_amd64.whl
0b2024655573f96a595c7f5072205e84  numpy-2.2.1-cp312-cp312-macosx_10_13_x86_64.whl
22483d8935f5dc128393ad671fde7d8e  numpy-2.2.1-cp312-cp312-macosx_11_0_arm64.whl
61d38533acaa90fb24657f089d177a6c  numpy-2.2.1-cp312-cp312-macosx_14_0_arm64.whl
ecd4289c703356f5b4fd7e440bf94ce8  numpy-2.2.1-cp312-cp312-macosx_14_0_x86_64.whl
a05208461ea09079ae569414d82a606c  numpy-2.2.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
4c66f10580fa26d1d17b2bdda96a5fc5  numpy-2.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
60a01c86b1fc55e4ba8f2b41f690703b  numpy-2.2.1-cp312-cp312-musllinux_1_2_aarch64.whl
4bcac2b7f8510b0a6582b7d8661257be  numpy-2.2.1-cp312-cp312-musllinux_1_2_x86_64.whl
7c24a6a3b5c5b2c53c6807bf06c595c5  numpy-2.2.1-cp312-cp312-win32.whl
dc9f3c1eaade4da63e5f87e878e5805e  numpy-2.2.1-cp312-cp312-win_amd64.whl
9aacdedcb2cb3d6a45dfb823148e01cf  numpy-2.2.1-cp313-cp313-macosx_10_13_x86_64.whl
8a2598b081c8af4ea6f6bbccc8965882  numpy-2.2.1-cp313-cp313-macosx_11_0_arm64.whl
e58b8db1a97599ed02a630eb86616bb9  numpy-2.2.1-cp313-cp313-macosx_14_0_arm64.whl
be6871a4edd2cd92b147421b9290e047  numpy-2.2.1-cp313-cp313-macosx_14_0_x86_64.whl
6d3f141f3a8ecd04e1a1f7c1f89a8ca2  numpy-2.2.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
eba9d71e631521bd1d9882f8bfbc01d2  numpy-2.2.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
07f7ea0a7f9f6ce0ba5e016dff2a91e8  numpy-2.2.1-cp313-cp313-musllinux_1_2_aarch64.whl
a015f42afa15be8b87fc64120c245f18  numpy-2.2.1-cp313-cp313-musllinux_1_2_x86_64.whl
881b9b20e68b317850ad7b6306ac1c51  numpy-2.2.1-cp313-cp313-win32.whl
35bd751636dcea0ca0534ad9dee8057a  numpy-2.2.1-cp313-cp313-win_amd64.whl
7057313b668a4a26b5386203ebc040d9  numpy-2.2.1-cp313-cp313t-macosx_10_13_x86_64.whl
02031b405d028714126c26ffc5772f0e  numpy-2.2.1-cp313-cp313t-macosx_11_0_arm64.whl
73eb35111b027d6771d9a91eb21ad7ef  numpy-2.2.1-cp313-cp313t-macosx_14_0_arm64.whl
01f9a5eb7ec872d9682bb6a174897b35  numpy-2.2.1-cp313-cp313t-macosx_14_0_x86_64.whl
9bc363d2782931efa2648b42ce358a4c  numpy-2.2.1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
b6492f49b50e892a7134baf2dba9f88d  numpy-2.2.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
a1c458a98cd9c7ad63f9c301398f4d63  numpy-2.2.1-cp313-cp313t-musllinux_1_2_aarch64.whl
38d2bf31247d9005c7a0197aa992cf1d  numpy-2.2.1-cp313-cp313t-musllinux_1_2_x86_64.whl
30e6acf4391728d0a3a5e3494bd4a2c8  numpy-2.2.1-cp313-cp313t-win32.whl
2100b60306e75288799fca60bd00b84f  numpy-2.2.1-cp313-cp313t-win_amd64.whl
f975551321147c307bbdff4889061b47  numpy-2.2.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
cefbc2de3aa5ef518ce652fdaab00c96  numpy-2.2.1-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
7e379c1d0a5be8e548e35fa7abe1d2c0  numpy-2.2.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
3cba151351656a83e4c84c942cf490e7  numpy-2.2.1-pp310-pypy310_pp73-win_amd64.whl
57c5757508a50d1daefa4b689e9701cb  numpy-2.2.1.tar.gz
SHA256
5edb4e4caf751c1518e6a26a83501fda79bff41cc59dac48d70e6d65d4ec4440  numpy-2.2.1-cp310-cp310-macosx_10_9_x86_64.whl
aa3017c40d513ccac9621a2364f939d39e550c542eb2a894b4c8da92b38896ab  numpy-2.2.1-cp310-cp310-macosx_11_0_arm64.whl
61048b4a49b1c93fe13426e04e04fdf5a03f456616f6e98c7576144677598675  numpy-2.2.1-cp310-cp310-macosx_14_0_arm64.whl
7671dc19c7019103ca44e8d94917eba8534c76133523ca8406822efdd19c9308  numpy-2.2.1-cp310-cp310-macosx_14_0_x86_64.whl
4250888bcb96617e00bfa28ac24850a83c9f3a16db471eca2ee1f1714df0f957  numpy-2.2.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a7746f235c47abc72b102d3bce9977714c2444bdfaea7888d241b4c4bb6a78bf  numpy-2.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
059e6a747ae84fce488c3ee397cee7e5f905fd1bda5fb18c66bc41807ff119b2  numpy-2.2.1-cp310-cp310-musllinux_1_2_aarch64.whl
f62aa6ee4eb43b024b0e5a01cf65a0bb078ef8c395e8713c6e8a12a697144528  numpy-2.2.1-cp310-cp310-musllinux_1_2_x86_64.whl
48fd472630715e1c1c89bf1feab55c29098cb403cc184b4859f9c86d4fcb6a95  numpy-2.2.1-cp310-cp310-win32.whl
b541032178a718c165a49638d28272b771053f628382d5e9d1c93df23ff58dbf  numpy-2.2.1-cp310-cp310-win_amd64.whl
40f9e544c1c56ba8f1cf7686a8c9b5bb249e665d40d626a23899ba6d5d9e1484  numpy-2.2.1-cp311-cp311-macosx_10_9_x86_64.whl
f9b57eaa3b0cd8db52049ed0330747b0364e899e8a606a624813452b8203d5f7  numpy-2.2.1-cp311-cp311-macosx_11_0_arm64.whl
bc8a37ad5b22c08e2dbd27df2b3ef7e5c0864235805b1e718a235bcb200cf1cb  numpy-2.2.1-cp311-cp311-macosx_14_0_arm64.whl
9036d6365d13b6cbe8f27a0eaf73ddcc070cae584e5ff94bb45e3e9d729feab5  numpy-2.2.1-cp311-cp311-macosx_14_0_x86_64.whl
51faf345324db860b515d3f364eaa93d0e0551a88d6218a7d61286554d190d73  numpy-2.2.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
38efc1e56b73cc9b182fe55e56e63b044dd26a72128fd2fbd502f75555d92591  numpy-2.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
31b89fa67a8042e96715c68e071a1200c4e172f93b0fbe01a14c0ff3ff820fc8  numpy-2.2.1-cp311-cp311-musllinux_1_2_aarch64.whl
4c86e2a209199ead7ee0af65e1d9992d1dce7e1f63c4b9a616500f93820658d0  numpy-2.2.1-cp311-cp311-musllinux_1_2_x86_64.whl
b34d87e8a3090ea626003f87f9392b3929a7bbf4104a05b6667348b6bd4bf1cd  numpy-2.2.1-cp311-cp311-win32.whl
360137f8fb1b753c5cde3ac388597ad680eccbbbb3865ab65efea062c4a1fd16  numpy-2.2.1-cp311-cp311-win_amd64.whl
694f9e921a0c8f252980e85bce61ebbd07ed2b7d4fa72d0e4246f2f8aa6642ab  numpy-2.2.1-cp312-cp312-macosx_10_13_x86_64.whl
3683a8d166f2692664262fd4900f207791d005fb088d7fdb973cc8d663626faa  numpy-2.2.1-cp312-cp312-macosx_11_0_arm64.whl
780077d95eafc2ccc3ced969db22377b3864e5b9a0ea5eb347cc93b3ea900315  numpy-2.2.1-cp312-cp312-macosx_14_0_arm64.whl
55ba24ebe208344aa7a00e4482f65742969a039c2acfcb910bc6fcd776eb4355  numpy-2.2.1-cp312-cp312-macosx_14_0_x86_64.whl
9b1d07b53b78bf84a96898c1bc139ad7f10fda7423f5fd158fd0f47ec5e01ac7  numpy-2.2.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
5062dc1a4e32a10dc2b8b13cedd58988261416e811c1dc4dbdea4f57eea61b0d  numpy-2.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
fce4f615f8ca31b2e61aa0eb5865a21e14f5629515c9151850aa936c02a1ee51  numpy-2.2.1-cp312-cp312-musllinux_1_2_aarch64.whl
67d4cda6fa6ffa073b08c8372aa5fa767ceb10c9a0587c707505a6d426f4e046  numpy-2.2.1-cp312-cp312-musllinux_1_2_x86_64.whl
32cb94448be47c500d2c7a95f93e2f21a01f1fd05dd2beea1ccd049bb6001cd2  numpy-2.2.1-cp312-cp312-win32.whl
ba5511d8f31c033a5fcbda22dd5c813630af98c70b2661f2d2c654ae3cdfcfc8  numpy-2.2.1-cp312-cp312-win_amd64.whl
f1d09e520217618e76396377c81fba6f290d5f926f50c35f3a5f72b01a0da780  numpy-2.2.1-cp313-cp313-macosx_10_13_x86_64.whl
3ecc47cd7f6ea0336042be87d9e7da378e5c7e9b3c8ad0f7c966f714fc10d821  numpy-2.2.1-cp313-cp313-macosx_11_0_arm64.whl
f419290bc8968a46c4933158c91a0012b7a99bb2e465d5ef5293879742f8797e  numpy-2.2.1-cp313-cp313-macosx_14_0_arm64.whl
5b6c390bfaef8c45a260554888966618328d30e72173697e5cabe6b285fb2348  numpy-2.2.1-cp313-cp313-macosx_14_0_x86_64.whl
526fc406ab991a340744aad7e25251dd47a6720a685fa3331e5c59fef5282a59  numpy-2.2.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
f74e6fdeb9a265624ec3a3918430205dff1df7e95a230779746a6af78bc615af  numpy-2.2.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
53c09385ff0b72ba79d8715683c1168c12e0b6e84fb0372e97553d1ea91efe51  numpy-2.2.1-cp313-cp313-musllinux_1_2_aarch64.whl
f3eac17d9ec51be534685ba877b6ab5edc3ab7ec95c8f163e5d7b39859524716  numpy-2.2.1-cp313-cp313-musllinux_1_2_x86_64.whl
9ad014faa93dbb52c80d8f4d3dcf855865c876c9660cb9bd7553843dd03a4b1e  numpy-2.2.1-cp313-cp313-win32.whl
164a829b6aacf79ca47ba4814b130c4020b202522a93d7bff2202bfb33b61c60  numpy-2.2.1-cp313-cp313-win_amd64.whl
4dfda918a13cc4f81e9118dea249e192ab167a0bb1966272d5503e39234d694e  numpy-2.2.1-cp313-cp313t-macosx_10_13_x86_64.whl
733585f9f4b62e9b3528dd1070ec4f52b8acf64215b60a845fa13ebd73cd0712  numpy-2.2.1-cp313-cp313t-macosx_11_0_arm64.whl
89b16a18e7bba224ce5114db863e7029803c179979e1af6ad6a6b11f70545008  numpy-2.2.1-cp313-cp313t-macosx_14_0_arm64.whl
676f4eebf6b2d430300f1f4f4c2461685f8269f94c89698d832cdf9277f30b84  numpy-2.2.1-cp313-cp313t-macosx_14_0_x86_64.whl
27f5cdf9f493b35f7e41e8368e7d7b4bbafaf9660cba53fb21d2cd174ec09631  numpy-2.2.1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
c1ad395cf254c4fbb5b2132fee391f361a6e8c1adbd28f2cd8e79308a615fe9d  numpy-2.2.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
08ef779aed40dbc52729d6ffe7dd51df85796a702afbf68a4f4e41fafdc8bda5  numpy-2.2.1-cp313-cp313t-musllinux_1_2_aarch64.whl
26c9c4382b19fcfbbed3238a14abf7ff223890ea1936b8890f058e7ba35e8d71  numpy-2.2.1-cp313-cp313t-musllinux_1_2_x86_64.whl
93cf4e045bae74c90ca833cba583c14b62cb4ba2cba0abd2b141ab52548247e2  numpy-2.2.1-cp313-cp313t-win32.whl
bff7d8ec20f5f42607599f9994770fa65d76edca264a87b5e4ea5629bce12268  numpy-2.2.1-cp313-cp313t-win_amd64.whl
7ba9cc93a91d86365a5d270dee221fdc04fb68d7478e6bf6af650de78a8339e3  numpy-2.2.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
3d03883435a19794e41f147612a77a8f56d4e52822337844fff3d4040a142964  numpy-2.2.1-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
4511d9e6071452b944207c8ce46ad2f897307910b402ea5fa975da32e0102800  numpy-2.2.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
5c5cc0cbabe9452038ed984d05ac87910f89370b9242371bd9079cb4af61811e  numpy-2.2.1-pp310-pypy310_pp73-win_amd64.whl
45681fd7128c8ad1c379f0ca0776a8b0c6583d2f69889ddac01559dfe4390918  numpy-2.2.1.tar.gz

v2.2.0: 2.2.0 (Dec 8, 2024)

Compare Source

NumPy 2.2.0 Release Notes

The NumPy 2.2.0 release is quick release that brings us back into sync
with the usual twice yearly release cycle. There have been an number of
small cleanups, as well as work bringing the new StringDType to
completion and improving support for free threaded Python. Highlights
are:

  • New functions matvec and vecmat, see below.
  • Many improved annotations.
  • Improved support for the new StringDType.
  • Improved support for free threaded Python
  • Fixes for f2py

This release supports Python versions 3.10-3.13.

Deprecations

  • _add_newdoc_ufunc is now deprecated. ufunc.__doc__ = newdoc
    should be used instead.

    (gh-27735)

Expired deprecations

  • bool(np.array([])) and other empty arrays will now raise an error.
    Use arr.size > 0 instead to check whether an array has no
    elements.

    (gh-27160)

Compatibility notes

  • numpy.cov now properly transposes single-row (2d
    array) design matrices when rowvar=False. Previously, single-row
    design matrices would return a scalar in this scenario, which is not
    correct, so this is a behavior change and an array of the
    appropriate shape will now be returned.

    (gh-27661)

New Features

  • New functions for matrix-vector and vector-matrix products

    Two new generalized ufuncs were defined:

    • numpy.matvec - matrix-vector product, treating the
      arguments as stacks of matrices and column vectors,
      respectively.
    • numpy.vecmat - vector-matrix product, treating the
      arguments as stacks of column vectors and matrices,
      respectively. For complex vectors, the conjugate is taken.

    These add to the existing numpy.matmul as well as to
    numpy.vecdot, which was added in numpy 2.0.

    Note that numpy.matmul never takes a complex
    conjugate, also not when its left input is a vector, while both
    numpy.vecdot and numpy.vecmat do take
    the conjugate for complex vectors on the left-hand side (which are
    taken to be the ones that are transposed, following the physics
    convention).

    (gh-25675)

  • np.complexfloating[T, T] can now also be written as
    np.complexfloating[T]

    (gh-27420)

  • UFuncs now support __dict__ attribute and allow overriding
    __doc__ (either directly or via ufunc.__dict__["__doc__"]).
    __dict__ can be used to also override other properties, such as
    __module__ or __qualname__.

    (gh-27735)

  • The "nbit" type parameter of np.number and its subtypes now
    defaults to typing.Any. This way, type-checkers will infer
    annotations such as x: np.floating as x: np.floating[Any], even
    in strict mode.

    (gh-27736)

Improvements

  • The datetime64 and timedelta64 hashes now correctly match the
    Pythons builtin datetime and timedelta ones. The hashes now
    evaluated equal even for equal values with different time units.

    (gh-14622)

  • Fixed a number of issues around promotion for string ufuncs with
    StringDType arguments. Mixing StringDType and the fixed-width DTypes
    using the string ufuncs should now generate much more uniform
    results.

    (gh-27636)

  • Improved support for empty memmap. Previously an empty
    memmap would fail unless a non-zero offset was set.
    Now a zero-size memmap is supported even if
    offset=0. To achieve this, if a memmap is mapped to
    an empty file that file is padded with a single byte.

    (gh-27723)

  • A regression has been fixed which allows F2PY users to expose variables
    to Python in modules with only assignments, and also fixes situations
    where multiple modules are present within a single source file.

    (gh-27695)

Performance improvements and changes

  • Improved multithreaded scaling on the free-threaded build when many
    threads simultaneously call the same ufunc operations.

    (gh-27896)

  • NumPy now uses fast-on-failure attribute lookups for protocols. This
    can greatly reduce overheads of function calls or array creation
    especially with custom Python objects. The largest improvements will
    be seen on Python 3.12 or newer.

    (gh-27119)

  • OpenBLAS on x86_64 and i686 is built with fewer kernels. Based on
    benchmarking, there are 5 clusters of performance around these
    kernels: PRESCOTT NEHALEM SANDYBRIDGE HASWELL SKYLAKEX.

  • OpenBLAS on windows is linked without quadmath, simplifying
    licensing

  • Due to a regression in OpenBLAS on windows, the performance
    improvements when using multiple threads for OpenBLAS 0.3.26 were
    reverted.

    (gh-27147)

  • NumPy now indicates hugepages also for large np.zeros allocations
    on linux. Thus should generally improve performance.

    (gh-27808)

Changes

  • numpy.fix now won't perform casting to a floating
    data-type for integer and boolean data-type input arrays.

    (gh-26766)

  • The type annotations of numpy.float64 and numpy.complex128 now
    reflect that they are also subtypes of the built-in float and
    complex types, respectively. This update prevents static
    type-checkers from reporting errors in cases such as:

    x: float = numpy.float64(6.28)  # valid
    z: complex = numpy.complex128(-1j)  # valid
    

    (gh-27334)

  • The repr of arrays large enough to be summarized (i.e., where
    elements are replaced with ...) now includes the shape of the
    array, similar to what already was the case for arrays with zero
    size and non-obvious shape. With this change, the shape is always
    given when it cannot be inferred from the values. Note that while
    written as shape=..., this argument cannot actually be passed in
    to the np.array constructor. If you encounter problems, e.g., due
    to failing doctests, you can use the print option legacy=2.1 to
    get the old behaviour.

    (gh-27482)

  • Calling __array_wrap__ directly on NumPy arrays or scalars now
    does the right thing when return_scalar is passed (Added in NumPy
    2). It is further safe now to call the scalar __array_wrap__ on a
    non-scalar result.

    (gh-27807)

  • Bump the musllinux CI image and wheels to 1_2 from 1_1. This is because
    1_1 is end of life.

    (gh-27088)

  • The NEP 50 promotion state settings are now removed. They were always
    meant as temporary means for testing. A warning will be given if the
    environment variable is set to anything but NPY_PROMOTION_STATE=weak
    while _set_promotion_state and _get_promotion_state are removed. In
    case code used _no_nep50_warning, a contextlib.nullcontext could be
    used to replace it when not available.

    (gh-27156)

Checksums

MD5
1b58b9e275e80364cd02dafb3f8daf35  numpy-2.2.0-cp310-cp310-macosx_10_9_x86_64.whl
7d3773d9b665b2d7cfec0cc0b760e69e  numpy-2.2.0-cp310-cp310-macosx_11_0_arm64.whl
8ef666a462d3765ccfd5288f2fdf8e08  numpy-2.2.0-cp310-cp310-macosx_14_0_arm64.whl
e4f9e3117075ffe53d7993253c774158  numpy-2.2.0-cp310-cp310-macosx_14_0_x86_64.whl
fd60e410e5db402a2d0c0cb4dd23281d  numpy-2.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
64c083cdbd91eb8670cd72b619f3a039  numpy-2.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
c3c75c2299f5163770e2e42f0dee5276  numpy-2.2.0-cp310-cp310-musllinux_1_2_aarch64.whl
f6ab05f787221bbaf8fb4a9778af5467  numpy-2.2.0-cp310-cp310-musllinux_1_2_x86_64.whl
9b04caec124cadf90005ccdb662aad9f  numpy-2.2.0-cp310-cp310-win32.whl
58934f23b6bc71fb1f984b688c1c6136  numpy-2.2.0-cp310-cp310-win_amd64.whl
769e53438154e53ba490fb4f816c083e  numpy-2.2.0-cp311-cp311-macosx_10_9_x86_64.whl
aa8060c013c04133b63780025eef4451  numpy-2.2.0-cp311-cp311-macosx_11_0_arm64.whl
72c10ef28a0ddffe6bf2495954ab82e0  numpy-2.2.0-cp311-cp311-macosx_14_0_arm64.whl
946b2510c86eb48e374e6987582c9b46  numpy-2.2.0-cp311-cp311-macosx_14_0_x86_64.whl
3f5203ae901ddd78cb298582eda07627  numpy-2.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
fd14624d40100a5eb0181bf393394448  numpy-2.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
7c86d51d89dbc5a6860d65641ea131ef  numpy-2.2.0-cp311-cp311-musllinux_1_2_aarch64.whl
895c6588c74019b94fb3c740b9e9a0f5  numpy-2.2.0-cp311-cp311-musllinux_1_2_x86_64.whl
1468ae1cb59a43991b199cfa6f1e5679  numpy-2.2.0-cp311-cp311-win32.whl
48a3792698a81917320b91a30c0bacf4  numpy-2.2.0-cp311-cp311-win_amd64.whl
db4377351f167d82adc66b16965d11bd  numpy-2.2.0-cp312-cp312-macosx_10_13_x86_64.whl
3f3978b5e480ed18d55b1799d9a534ff  numpy-2.2.0-cp312-cp312-macosx_11_0_arm64.whl
584b4063eb66688b607f7e7bdca58011  numpy-2.2.0-cp312-cp312-macosx_14_0_arm64.whl
dfacf4ee4842d845f5e12f912ebc2055  numpy-2.2.0-cp312-cp312-macosx_14_0_x86_64.whl
2f10d9bc44635078a6222ed50c9fd0f2  numpy-2.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
bb69665b4b68b7af82939132972e8261  numpy-2.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
92e9b03039ab737e6799dbd9d057fce2  numpy-2.2.0-cp312-cp312-musllinux_1_2_aarch64.whl
a4198f53e3906394012ab88dffff4077  numpy-2.2.0-cp312-cp312-musllinux_1_2_x86_64.whl
f9cb2f38ae8272ab5eb4b209c59be45f  numpy-2.2.0-cp312-cp312-win32.whl
6ffe9e1abf69bb8c4ee2e913b1badfde  numpy-2.2.0-cp312-cp312-win_amd64.whl
330838b6e06481341b35f8d4b6b50bbb  numpy-2.2.0-cp313-cp313-macosx_10_13_x86_64.whl
4fb63be6d2b92acfba0c2eaedce82e06  numpy-2.2.0-cp313-cp313-macosx_11_0_arm64.whl
e4086f43f9ce29b5adf939e1b5150f03  numpy-2.2.0-cp313-cp313-macosx_14_0_arm64.whl
ba74e1f7142954127fb2aef544a6b05e  numpy-2.2.0-cp313-cp313-macosx_14_0_x86_64.whl
83f51806139d5adc70a2e309d0300ad1  numpy-2.2.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
bf9af9abb1e30521b3491f0748ba6199  numpy-2.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
4d30c57bd7103b36a4bf7a4a9e25e10d  numpy-2.2.0-cp313-cp313-musllinux_1_2_aarch64.whl
5b12557dde538f99fd87d1682638a212  numpy-2.2.0-cp313-cp313-musllinux_1_2_x86_64.whl
ee7689d2ecbcbd7c883f69099bd41892  numpy-2.2.0-cp313-cp313-win32.whl
370a2b14681c6dc4af8596f62d96bb20  numpy-2.2.0-cp313-cp313-win_amd64.whl
e6fd32fb42fd89c7659e799d65c19557  numpy-2.2.0-cp313-cp313t-macosx_10_13_x86_64.whl
8e9b0579f2e22f38f57399ab18d6e651  numpy-2.2.0-cp313-cp313t-macosx_11_0_arm64.whl
71a7ee75208a633a8c36d4ed5b551c33  numpy-2.2.0-cp313-cp313t-macosx_14_0_arm64.whl
3d76dfe8c2e26dc42b97fdf086ce1fa5  numpy-2.2.0-cp313-cp313t-macosx_14_0_x86_64.whl
b70ea00b40fb7d1b5d84868d8a073afb  numpy-2.2.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a6bc7090a4e2b1e9deabd0671c691129  numpy-2.2.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
9789193a075e8d494851fe7955a23af7  numpy-2.2.0-cp313-cp313t-musllinux_1_2_aarch64.whl
8c199d25bd806f737950428232b0dfa5  numpy-2.2.0-cp313-cp313t-musllinux_1_2_x86_64.whl
1f566cfe4880ca30a591a828634da429  numpy-2.2.0-cp313-cp313t-win32.whl
eb9ea9f8fba78e7ae5b1415de1ee5c2c  numpy-2.2.0-cp313-cp313t-win_amd64.whl
9fbe2640c73e4f391019db5af6e854f5  numpy-2.2.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
fc89986fda7ba19c7c50712f1fc1e342  numpy-2.2.0-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
d76c5769a3fdfb9e25b3c1a951bd021f  numpy-2.2.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
c138d726fee19ec6ba85eaa2ba9a3390  numpy-2.2.0-pp310-pypy310_pp73-win_amd64.whl
81a58d5fd26fe983162dc3cea2989b7a  numpy-2.2.0.tar.gz
SHA256
1e25507d85da11ff5066269d0bd25d06e0a0f2e908415534f3e603d2a78e4ffa  numpy-2.2.0-cp310-cp310-macosx_10_9_x86_64.whl
a62eb442011776e4036af5c8b1a00b706c5bc02dc15eb5344b0c750428c94219  numpy-2.2.0-cp310-cp310-macosx_11_0_arm64.whl
b606b1aaf802e6468c2608c65ff7ece53eae1a6874b3765f69b8ceb20c5fa78e  numpy-2.2.0-cp310-cp310-macosx_14_0_arm64.whl
36b2b43146f646642b425dd2027730f99bac962618ec2052932157e213a040e9  numpy-2.2.0-cp310-cp310-macosx_14_0_x86_64.whl
7fe8f3583e0607ad4e43a954e35c1748b553bfe9fdac8635c02058023277d1b3  numpy-2.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
122fd2fcfafdefc889c64ad99c228d5a1f9692c3a83f56c292618a59aa60ae83  numpy-2.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
3f2f5cddeaa4424a0a118924b988746db6ffa8565e5829b1841a8a3bd73eb59a  numpy-2.2.0-cp310-cp310-musllinux_1_2_aarch64.whl
7fe4bb0695fe986a9e4deec3b6857003b4cfe5c5e4aac0b95f6a658c14635e31  numpy-2.2.0-cp310-cp310-musllinux_1_2_x86_64.whl
b30042fe92dbd79f1ba7f6898fada10bdaad1847c44f2dff9a16147e00a93661  numpy-2.2.0-cp310-cp310-win32.whl
54dc1d6d66f8d37843ed281773c7174f03bf7ad826523f73435deb88ba60d2d4  numpy-2.2.0-cp310-cp310-win_amd64.whl
9874bc2ff574c40ab7a5cbb7464bf9b045d617e36754a7bc93f933d52bd9ffc6  numpy-2.2.0-cp311-cp311-macosx_10_9_x86_64.whl
0da8495970f6b101ddd0c38ace92edea30e7e12b9a926b57f5fabb1ecc25bb90  numpy-2.2.0-cp311-cp311-macosx_11_0_arm64.whl
0557eebc699c1c34cccdd8c3778c9294e8196df27d713706895edc6f57d29608  numpy-2.2.0-cp311-cp311-macosx_14_0_arm64.whl
3579eaeb5e07f3ded59298ce22b65f877a86ba8e9fe701f5576c99bb17c283da  numpy-2.2.0-cp311-cp311-macosx_14_0_x86_64.whl
40deb10198bbaa531509aad0cd2f9fadb26c8b94070831e2208e7df543562b74  numpy-2.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
c2aed8fcf8abc3020d6a9ccb31dbc9e7d7819c56a348cc88fd44be269b37427e  numpy-2.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
a222d764352c773aa5ebde02dd84dba3279c81c6db2e482d62a3fa54e5ece69b  numpy-2.2.0-cp311-cp311-musllinux_1_2_aarch64.whl
4e58666988605e251d42c2818c7d3d8991555381be26399303053b58a5bbf30d  numpy-2.2.0-cp311-cp311-musllinux_1_2_x86_64.whl
4723a50e1523e1de4fccd1b9a6dcea750c2102461e9a02b2ac55ffeae09a4410  numpy-2.2.0-cp311-cp311-win32.whl
16757cf28621e43e252c560d25b15f18a2f11da94fea344bf26c599b9cf54b73  numpy-2.2.0-cp311-cp311-win_amd64.whl
cff210198bb4cae3f3c100444c5eaa573a823f05c253e7188e1362a5555235b3  numpy-2.2.0-cp312-cp312-macosx_10_13_x86_64.whl
58b92a5828bd4d9aa0952492b7de803135038de47343b2aa3cc23f3b71a3dc4e  numpy-2.2.0-cp312-cp312-macosx_11_0_arm64.whl
ebe5e59545401fbb1b24da76f006ab19734ae71e703cdb4a8b347e84a0cece67  numpy-2.2.0-cp312-cp312-macosx_14_0_arm64.whl
e2b8cd48a9942ed3f85b95ca4105c45758438c7ed28fff1e4ce3e57c3b589d8e  numpy-2.2.0-cp312-cp312-macosx_14_0_x86_64.whl
57fcc997ffc0bef234b8875a54d4058afa92b0b0c4223fc1f62f24b3b5e86038  numpy-2.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
85ad7d11b309bd132d74397fcf2920933c9d1dc865487128f5c03d580f2c3d03  numpy-2.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
cb24cca1968b21355cc6f3da1a20cd1cebd8a023e3c5b09b432444617949085a  numpy-2.2.0-cp312-cp312-musllinux_1_2_aarch64.whl
0798b138c291d792f8ea40fe3768610f3c7dd2574389e37c3f26573757c8f7ef  numpy-2.2.0-cp312-cp312-musllinux_1_2_x86_64.whl
afe8fb968743d40435c3827632fd36c5fbde633b0423da7692e426529b1759b1  numpy-2.2.0-cp312-cp312-win32.whl
3a4199f519e57d517ebd48cb76b36c82da0360781c6a0353e64c0cac30ecaad3  numpy-2.2.0-cp312-cp312-win_amd64.whl
f8c8b141ef9699ae777c6278b52c706b653bf15d135d302754f6b2e90eb30367  numpy-2.2.0-cp313-cp313-macosx_10_13_x86_64.whl
0f0986e917aca18f7a567b812ef7ca9391288e2acb7a4308aa9d265bd724bdae  numpy-2.2.0-cp313-cp313-macosx_11_0_arm64.whl
1c92113619f7b272838b8d6702a7f8ebe5edea0df48166c47929611d0b4dea69  numpy-2.2.0-cp313-cp313-macosx_14_0_arm64.whl
5a145e956b374e72ad1dff82779177d4a3c62bc8248f41b80cb5122e68f22d13  numpy-2.2.0-cp313-cp313-macosx_14_0_x86_64.whl
18142b497d70a34b01642b9feabb70156311b326fdddd875a9981f34a369b671  numpy-2.2.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a7d41d1612c1a82b64697e894b75db6758d4f21c3ec069d841e60ebe54b5b571  numpy-2.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
a98f6f20465e7618c83252c02041517bd2f7ea29be5378f09667a8f654a5918d  numpy-2.2.0-cp313-cp313-musllinux_1_2_aarch64.whl
e09d40edfdb4e260cb1567d8ae770ccf3b8b7e9f0d9b5c2a9992696b30ce2742  numpy-2.2.0-cp313-cp313-musllinux_1_2_x86_64.whl
3905a5fffcc23e597ee4d9fb3fcd209bd658c352657548db7316e810ca80458e  numpy-2.2.0-cp313-cp313-win32.whl
a184288538e6ad699cbe6b24859206e38ce5fba28f3bcfa51c90d0502c1582b2  numpy-2.2.0-cp313-cp313-win_amd64.whl
7832f9e8eb00be32f15fdfb9a981d6955ea9adc8574c521d48710171b6c55e95  numpy-2.2.0-cp313-cp313t-macosx_10_13_x86_64.whl
f0dd071b95bbca244f4cb7f70b77d2ff3aaaba7fa16dc41f58d14854a6204e6c  numpy-2.2.0-cp313-cp313t-macosx_11_0_arm64.whl
b0b227dcff8cdc3efbce66d4e50891f04d0a387cce282fe1e66199146a6a8fca  numpy-2.2.0-cp313-cp313t-macosx_14_0_arm64.whl
6ab153263a7c5ccaf6dfe7e53447b74f77789f28ecb278c3b5d49db7ece10d6d  numpy-2.2.0-cp313-cp313t-macosx_14_0_x86_64.whl
e500aba968a48e9019e42c0c199b7ec0696a97fa69037bea163b55398e390529  numpy-2.2.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
440cfb3db4c5029775803794f8638fbdbf71ec702caf32735f53b008e1eaece3  numpy-2.2.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
a55dc7a7f0b6198b07ec0cd445fbb98b05234e8b00c5ac4874a63372ba98d4ab  numpy-2.2.0-cp313-cp313t-musllinux_1_2_aarch64.whl
4bddbaa30d78c86329b26bd6aaaea06b1e47444da99eddac7bf1e2fab717bd72  numpy-2.2.0-cp313-cp313t-musllinux_1_2_x86_64.whl
30bf971c12e4365153afb31fc73f441d4da157153f3400b82db32d04de1e4066  numpy-2.2.0-cp313-cp313t-win32.whl
d35717333b39d1b6bb8433fa758a55f1081543de527171543a2b710551d40881  numpy-2.2.0-cp313-cp313t-win_amd64.whl
e12c6c1ce84628c52d6367863773f7c8c8241be554e8b79686e91a43f1733773  numpy-2.2.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
b6207dc8fb3c8cb5668e885cef9ec7f70189bec4e276f0ff70d5aa078d32c88e  numpy-2.2.0-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
a50aeff71d0f97b6450d33940c7181b08be1441c6c193e678211bff11aa725e7  numpy-2.2.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
df12a1f99b99f569a7c2ae59aa2d31724e8d835fc7f33e14f4792e3071d11221  numpy-2.2.0-pp310-pypy310_pp73-win_amd64.whl
140dd80ff8981a583a60980be1a655068f8adebf7a45a06a6858c873fcdcd4a0  numpy-2.2.0.tar.gz

Configuration

📅 Schedule: Branch creation - At any time (no schedule defined), Automerge - At any time (no schedule defined).

🚦 Automerge: Enabled.

Rebasing: Whenever PR is behind base branch, or you tick the rebase/retry checkbox.

🔕 Ignore: Close this PR and you won't be reminded about this update again.


  • If you want to rebase/retry this PR, check this box

This PR has been generated by Renovate Bot.

This PR contains the following updates: | Package | Update | Change | |---|---|---| | [numpy](https://github.com/numpy/numpy) ([changelog](https://numpy.org/doc/stable/release)) | minor | `==2.1.3` -> `==2.2.1` | --- ### Release Notes <details> <summary>numpy/numpy (numpy)</summary> ### [`v2.2.1`](https://github.com/numpy/numpy/releases/tag/v2.2.1): 2.2.1 (DEC 21, 2024) [Compare Source](https://github.com/numpy/numpy/compare/v2.2.0...v2.2.1) ### NumPy 2.2.1 Release Notes NumPy 2.2.1 is a patch release following 2.2.0. It fixes bugs found after the 2.2.0 release and has several maintenance pins to work around upstream changes. There was some breakage in downstream projects following the 2.2.0 release due to updates to NumPy typing. Because of problems due to MyPy defects, we recommend using basedpyright for type checking, it can be installed from PyPI. The Pylance extension for Visual Studio Code is also based on Pyright. Problems that persist when using basedpyright should be reported as issues on the NumPy github site. This release supports Python 3.10-3.13. #### Contributors A total of 9 people contributed to this release. People with a "+" by their names contributed a patch for the first time. - Charles Harris - Joren Hammudoglu - Matti Picus - Nathan Goldbaum - Peter Hawkins - Simon Altrogge - Thomas A Caswell - Warren Weckesser - Yang Wang + #### Pull requests merged A total of 12 pull requests were merged for this release. - [#&#8203;27935](https://github.com/numpy/numpy/pull/27935): MAINT: Prepare 2.2.x for further development - [#&#8203;27950](https://github.com/numpy/numpy/pull/27950): TEST: cleanups - [#&#8203;27958](https://github.com/numpy/numpy/pull/27958): BUG: fix use-after-free error in npy_hashtable.cpp ([#&#8203;27955](https://github.com/numpy/numpy/issues/27955)) - [#&#8203;27959](https://github.com/numpy/numpy/pull/27959): BLD: add missing include - [#&#8203;27982](https://github.com/numpy/numpy/pull/27982): BUG:fix compile error libatomic link test to meson.build - [#&#8203;27990](https://github.com/numpy/numpy/pull/27990): TYP: Fix falsely rejected value types in `ndarray.__setitem__` - [#&#8203;27991](https://github.com/numpy/numpy/pull/27991): MAINT: Don't wrap `#include <Python.h>` with `extern "C"` - [#&#8203;27993](https://github.com/numpy/numpy/pull/27993): BUG: Fix segfault in stringdtype lexsort - [#&#8203;28006](https://github.com/numpy/numpy/pull/28006): MAINT: random: Tweak module code in mtrand.pyx to fix a Cython... - [#&#8203;28007](https://github.com/numpy/numpy/pull/28007): BUG: Cython API was missing NPY_UINTP. - [#&#8203;28021](https://github.com/numpy/numpy/pull/28021): CI: pin scipy-doctest to 1.5.1 - [#&#8203;28044](https://github.com/numpy/numpy/pull/28044): TYP: allow `None` in operand sequence of nditer #### Checksums ##### MD5 d3032be00b974d44aae687fd78a897b4 numpy-2.2.1-cp310-cp310-macosx_10_9_x86_64.whl 49863a39471cf191402da96512e52cb6 numpy-2.2.1-cp310-cp310-macosx_11_0_arm64.whl 31c912e2fa723b877f2d710c26332927 numpy-2.2.1-cp310-cp310-macosx_14_0_arm64.whl 95af4f6b620c76f9ccb8c5693c99737d numpy-2.2.1-cp310-cp310-macosx_14_0_x86_64.whl c1b113ad487a3bece6d7a70e0cf70f17 numpy-2.2.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl e93369ddbb637d9d5a820b2bb79588c4 numpy-2.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl b3de0a2c345541d2c9a322df360ca497 numpy-2.2.1-cp310-cp310-musllinux_1_2_aarch64.whl e3e62b93245d9e37cc03ec3cfaf68118 numpy-2.2.1-cp310-cp310-musllinux_1_2_x86_64.whl 004063642d3c3792a3f5ff0241a3fa0f numpy-2.2.1-cp310-cp310-win32.whl 462b0704ebfd79120edfe6431adc57f4 numpy-2.2.1-cp310-cp310-win_amd64.whl a739a2dfbceaa1140e564424b2a57540 numpy-2.2.1-cp311-cp311-macosx_10_9_x86_64.whl 91731d46f4ce4b04db512400f4e76ccb numpy-2.2.1-cp311-cp311-macosx_11_0_arm64.whl 93f50db664a6986c2ebed3ceb588f7cc numpy-2.2.1-cp311-cp311-macosx_14_0_arm64.whl 8cc0d82b938d71f45a67c74e07ddc7fd numpy-2.2.1-cp311-cp311-macosx_14_0_x86_64.whl fc7b253096fc566bbcbadfdf6b034f1b numpy-2.2.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl b88238965c708578f2c198d1c6e2cf70 numpy-2.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl df20d649bb023f98e487b229f01e9708 numpy-2.2.1-cp311-cp311-musllinux_1_2_aarch64.whl e23d2bfbdb1bd1b2872c9e6e15f64dca numpy-2.2.1-cp311-cp311-musllinux_1_2_x86_64.whl cce4ebb9afc1470db243c2ab4cc6639b numpy-2.2.1-cp311-cp311-win32.whl c96783ee8ad6ce1efee94821929a12f5 numpy-2.2.1-cp311-cp311-win_amd64.whl 0b2024655573f96a595c7f5072205e84 numpy-2.2.1-cp312-cp312-macosx_10_13_x86_64.whl 22483d8935f5dc128393ad671fde7d8e numpy-2.2.1-cp312-cp312-macosx_11_0_arm64.whl 61d38533acaa90fb24657f089d177a6c numpy-2.2.1-cp312-cp312-macosx_14_0_arm64.whl ecd4289c703356f5b4fd7e440bf94ce8 numpy-2.2.1-cp312-cp312-macosx_14_0_x86_64.whl a05208461ea09079ae569414d82a606c numpy-2.2.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 4c66f10580fa26d1d17b2bdda96a5fc5 numpy-2.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 60a01c86b1fc55e4ba8f2b41f690703b numpy-2.2.1-cp312-cp312-musllinux_1_2_aarch64.whl 4bcac2b7f8510b0a6582b7d8661257be numpy-2.2.1-cp312-cp312-musllinux_1_2_x86_64.whl 7c24a6a3b5c5b2c53c6807bf06c595c5 numpy-2.2.1-cp312-cp312-win32.whl dc9f3c1eaade4da63e5f87e878e5805e numpy-2.2.1-cp312-cp312-win_amd64.whl 9aacdedcb2cb3d6a45dfb823148e01cf numpy-2.2.1-cp313-cp313-macosx_10_13_x86_64.whl 8a2598b081c8af4ea6f6bbccc8965882 numpy-2.2.1-cp313-cp313-macosx_11_0_arm64.whl e58b8db1a97599ed02a630eb86616bb9 numpy-2.2.1-cp313-cp313-macosx_14_0_arm64.whl be6871a4edd2cd92b147421b9290e047 numpy-2.2.1-cp313-cp313-macosx_14_0_x86_64.whl 6d3f141f3a8ecd04e1a1f7c1f89a8ca2 numpy-2.2.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl eba9d71e631521bd1d9882f8bfbc01d2 numpy-2.2.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 07f7ea0a7f9f6ce0ba5e016dff2a91e8 numpy-2.2.1-cp313-cp313-musllinux_1_2_aarch64.whl a015f42afa15be8b87fc64120c245f18 numpy-2.2.1-cp313-cp313-musllinux_1_2_x86_64.whl 881b9b20e68b317850ad7b6306ac1c51 numpy-2.2.1-cp313-cp313-win32.whl 35bd751636dcea0ca0534ad9dee8057a numpy-2.2.1-cp313-cp313-win_amd64.whl 7057313b668a4a26b5386203ebc040d9 numpy-2.2.1-cp313-cp313t-macosx_10_13_x86_64.whl 02031b405d028714126c26ffc5772f0e numpy-2.2.1-cp313-cp313t-macosx_11_0_arm64.whl 73eb35111b027d6771d9a91eb21ad7ef numpy-2.2.1-cp313-cp313t-macosx_14_0_arm64.whl 01f9a5eb7ec872d9682bb6a174897b35 numpy-2.2.1-cp313-cp313t-macosx_14_0_x86_64.whl 9bc363d2782931efa2648b42ce358a4c numpy-2.2.1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl b6492f49b50e892a7134baf2dba9f88d numpy-2.2.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl a1c458a98cd9c7ad63f9c301398f4d63 numpy-2.2.1-cp313-cp313t-musllinux_1_2_aarch64.whl 38d2bf31247d9005c7a0197aa992cf1d numpy-2.2.1-cp313-cp313t-musllinux_1_2_x86_64.whl 30e6acf4391728d0a3a5e3494bd4a2c8 numpy-2.2.1-cp313-cp313t-win32.whl 2100b60306e75288799fca60bd00b84f numpy-2.2.1-cp313-cp313t-win_amd64.whl f975551321147c307bbdff4889061b47 numpy-2.2.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl cefbc2de3aa5ef518ce652fdaab00c96 numpy-2.2.1-pp310-pypy310_pp73-macosx_14_0_x86_64.whl 7e379c1d0a5be8e548e35fa7abe1d2c0 numpy-2.2.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 3cba151351656a83e4c84c942cf490e7 numpy-2.2.1-pp310-pypy310_pp73-win_amd64.whl 57c5757508a50d1daefa4b689e9701cb numpy-2.2.1.tar.gz ##### SHA256 5edb4e4caf751c1518e6a26a83501fda79bff41cc59dac48d70e6d65d4ec4440 numpy-2.2.1-cp310-cp310-macosx_10_9_x86_64.whl aa3017c40d513ccac9621a2364f939d39e550c542eb2a894b4c8da92b38896ab numpy-2.2.1-cp310-cp310-macosx_11_0_arm64.whl 61048b4a49b1c93fe13426e04e04fdf5a03f456616f6e98c7576144677598675 numpy-2.2.1-cp310-cp310-macosx_14_0_arm64.whl 7671dc19c7019103ca44e8d94917eba8534c76133523ca8406822efdd19c9308 numpy-2.2.1-cp310-cp310-macosx_14_0_x86_64.whl 4250888bcb96617e00bfa28ac24850a83c9f3a16db471eca2ee1f1714df0f957 numpy-2.2.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl a7746f235c47abc72b102d3bce9977714c2444bdfaea7888d241b4c4bb6a78bf numpy-2.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 059e6a747ae84fce488c3ee397cee7e5f905fd1bda5fb18c66bc41807ff119b2 numpy-2.2.1-cp310-cp310-musllinux_1_2_aarch64.whl f62aa6ee4eb43b024b0e5a01cf65a0bb078ef8c395e8713c6e8a12a697144528 numpy-2.2.1-cp310-cp310-musllinux_1_2_x86_64.whl 48fd472630715e1c1c89bf1feab55c29098cb403cc184b4859f9c86d4fcb6a95 numpy-2.2.1-cp310-cp310-win32.whl b541032178a718c165a49638d28272b771053f628382d5e9d1c93df23ff58dbf numpy-2.2.1-cp310-cp310-win_amd64.whl 40f9e544c1c56ba8f1cf7686a8c9b5bb249e665d40d626a23899ba6d5d9e1484 numpy-2.2.1-cp311-cp311-macosx_10_9_x86_64.whl f9b57eaa3b0cd8db52049ed0330747b0364e899e8a606a624813452b8203d5f7 numpy-2.2.1-cp311-cp311-macosx_11_0_arm64.whl bc8a37ad5b22c08e2dbd27df2b3ef7e5c0864235805b1e718a235bcb200cf1cb numpy-2.2.1-cp311-cp311-macosx_14_0_arm64.whl 9036d6365d13b6cbe8f27a0eaf73ddcc070cae584e5ff94bb45e3e9d729feab5 numpy-2.2.1-cp311-cp311-macosx_14_0_x86_64.whl 51faf345324db860b515d3f364eaa93d0e0551a88d6218a7d61286554d190d73 numpy-2.2.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 38efc1e56b73cc9b182fe55e56e63b044dd26a72128fd2fbd502f75555d92591 numpy-2.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 31b89fa67a8042e96715c68e071a1200c4e172f93b0fbe01a14c0ff3ff820fc8 numpy-2.2.1-cp311-cp311-musllinux_1_2_aarch64.whl 4c86e2a209199ead7ee0af65e1d9992d1dce7e1f63c4b9a616500f93820658d0 numpy-2.2.1-cp311-cp311-musllinux_1_2_x86_64.whl b34d87e8a3090ea626003f87f9392b3929a7bbf4104a05b6667348b6bd4bf1cd numpy-2.2.1-cp311-cp311-win32.whl 360137f8fb1b753c5cde3ac388597ad680eccbbbb3865ab65efea062c4a1fd16 numpy-2.2.1-cp311-cp311-win_amd64.whl 694f9e921a0c8f252980e85bce61ebbd07ed2b7d4fa72d0e4246f2f8aa6642ab numpy-2.2.1-cp312-cp312-macosx_10_13_x86_64.whl 3683a8d166f2692664262fd4900f207791d005fb088d7fdb973cc8d663626faa numpy-2.2.1-cp312-cp312-macosx_11_0_arm64.whl 780077d95eafc2ccc3ced969db22377b3864e5b9a0ea5eb347cc93b3ea900315 numpy-2.2.1-cp312-cp312-macosx_14_0_arm64.whl 55ba24ebe208344aa7a00e4482f65742969a039c2acfcb910bc6fcd776eb4355 numpy-2.2.1-cp312-cp312-macosx_14_0_x86_64.whl 9b1d07b53b78bf84a96898c1bc139ad7f10fda7423f5fd158fd0f47ec5e01ac7 numpy-2.2.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 5062dc1a4e32a10dc2b8b13cedd58988261416e811c1dc4dbdea4f57eea61b0d numpy-2.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl fce4f615f8ca31b2e61aa0eb5865a21e14f5629515c9151850aa936c02a1ee51 numpy-2.2.1-cp312-cp312-musllinux_1_2_aarch64.whl 67d4cda6fa6ffa073b08c8372aa5fa767ceb10c9a0587c707505a6d426f4e046 numpy-2.2.1-cp312-cp312-musllinux_1_2_x86_64.whl 32cb94448be47c500d2c7a95f93e2f21a01f1fd05dd2beea1ccd049bb6001cd2 numpy-2.2.1-cp312-cp312-win32.whl ba5511d8f31c033a5fcbda22dd5c813630af98c70b2661f2d2c654ae3cdfcfc8 numpy-2.2.1-cp312-cp312-win_amd64.whl f1d09e520217618e76396377c81fba6f290d5f926f50c35f3a5f72b01a0da780 numpy-2.2.1-cp313-cp313-macosx_10_13_x86_64.whl 3ecc47cd7f6ea0336042be87d9e7da378e5c7e9b3c8ad0f7c966f714fc10d821 numpy-2.2.1-cp313-cp313-macosx_11_0_arm64.whl f419290bc8968a46c4933158c91a0012b7a99bb2e465d5ef5293879742f8797e numpy-2.2.1-cp313-cp313-macosx_14_0_arm64.whl 5b6c390bfaef8c45a260554888966618328d30e72173697e5cabe6b285fb2348 numpy-2.2.1-cp313-cp313-macosx_14_0_x86_64.whl 526fc406ab991a340744aad7e25251dd47a6720a685fa3331e5c59fef5282a59 numpy-2.2.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl f74e6fdeb9a265624ec3a3918430205dff1df7e95a230779746a6af78bc615af numpy-2.2.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 53c09385ff0b72ba79d8715683c1168c12e0b6e84fb0372e97553d1ea91efe51 numpy-2.2.1-cp313-cp313-musllinux_1_2_aarch64.whl f3eac17d9ec51be534685ba877b6ab5edc3ab7ec95c8f163e5d7b39859524716 numpy-2.2.1-cp313-cp313-musllinux_1_2_x86_64.whl 9ad014faa93dbb52c80d8f4d3dcf855865c876c9660cb9bd7553843dd03a4b1e numpy-2.2.1-cp313-cp313-win32.whl 164a829b6aacf79ca47ba4814b130c4020b202522a93d7bff2202bfb33b61c60 numpy-2.2.1-cp313-cp313-win_amd64.whl 4dfda918a13cc4f81e9118dea249e192ab167a0bb1966272d5503e39234d694e numpy-2.2.1-cp313-cp313t-macosx_10_13_x86_64.whl 733585f9f4b62e9b3528dd1070ec4f52b8acf64215b60a845fa13ebd73cd0712 numpy-2.2.1-cp313-cp313t-macosx_11_0_arm64.whl 89b16a18e7bba224ce5114db863e7029803c179979e1af6ad6a6b11f70545008 numpy-2.2.1-cp313-cp313t-macosx_14_0_arm64.whl 676f4eebf6b2d430300f1f4f4c2461685f8269f94c89698d832cdf9277f30b84 numpy-2.2.1-cp313-cp313t-macosx_14_0_x86_64.whl 27f5cdf9f493b35f7e41e8368e7d7b4bbafaf9660cba53fb21d2cd174ec09631 numpy-2.2.1-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl c1ad395cf254c4fbb5b2132fee391f361a6e8c1adbd28f2cd8e79308a615fe9d numpy-2.2.1-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 08ef779aed40dbc52729d6ffe7dd51df85796a702afbf68a4f4e41fafdc8bda5 numpy-2.2.1-cp313-cp313t-musllinux_1_2_aarch64.whl 26c9c4382b19fcfbbed3238a14abf7ff223890ea1936b8890f058e7ba35e8d71 numpy-2.2.1-cp313-cp313t-musllinux_1_2_x86_64.whl 93cf4e045bae74c90ca833cba583c14b62cb4ba2cba0abd2b141ab52548247e2 numpy-2.2.1-cp313-cp313t-win32.whl bff7d8ec20f5f42607599f9994770fa65d76edca264a87b5e4ea5629bce12268 numpy-2.2.1-cp313-cp313t-win_amd64.whl 7ba9cc93a91d86365a5d270dee221fdc04fb68d7478e6bf6af650de78a8339e3 numpy-2.2.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl 3d03883435a19794e41f147612a77a8f56d4e52822337844fff3d4040a142964 numpy-2.2.1-pp310-pypy310_pp73-macosx_14_0_x86_64.whl 4511d9e6071452b944207c8ce46ad2f897307910b402ea5fa975da32e0102800 numpy-2.2.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 5c5cc0cbabe9452038ed984d05ac87910f89370b9242371bd9079cb4af61811e numpy-2.2.1-pp310-pypy310_pp73-win_amd64.whl 45681fd7128c8ad1c379f0ca0776a8b0c6583d2f69889ddac01559dfe4390918 numpy-2.2.1.tar.gz ### [`v2.2.0`](https://github.com/numpy/numpy/releases/tag/v2.2.0): 2.2.0 (Dec 8, 2024) [Compare Source](https://github.com/numpy/numpy/compare/v2.1.3...v2.2.0) ### NumPy 2.2.0 Release Notes The NumPy 2.2.0 release is quick release that brings us back into sync with the usual twice yearly release cycle. There have been an number of small cleanups, as well as work bringing the new StringDType to completion and improving support for free threaded Python. Highlights are: - New functions `matvec` and `vecmat`, see below. - Many improved annotations. - Improved support for the new StringDType. - Improved support for free threaded Python - Fixes for f2py This release supports Python versions 3.10-3.13. #### Deprecations - `_add_newdoc_ufunc` is now deprecated. `ufunc.__doc__ = newdoc` should be used instead. ([gh-27735](https://github.com/numpy/numpy/pull/27735)) #### Expired deprecations - `bool(np.array([]))` and other empty arrays will now raise an error. Use `arr.size > 0` instead to check whether an array has no elements. ([gh-27160](https://github.com/numpy/numpy/pull/27160)) #### Compatibility notes - `numpy.cov` now properly transposes single-row (2d array) design matrices when `rowvar=False`. Previously, single-row design matrices would return a scalar in this scenario, which is not correct, so this is a behavior change and an array of the appropriate shape will now be returned. ([gh-27661](https://github.com/numpy/numpy/pull/27661)) #### New Features - New functions for matrix-vector and vector-matrix products Two new generalized ufuncs were defined: - `numpy.matvec` - matrix-vector product, treating the arguments as stacks of matrices and column vectors, respectively. - `numpy.vecmat` - vector-matrix product, treating the arguments as stacks of column vectors and matrices, respectively. For complex vectors, the conjugate is taken. These add to the existing `numpy.matmul` as well as to `numpy.vecdot`, which was added in numpy 2.0. Note that `numpy.matmul` never takes a complex conjugate, also not when its left input is a vector, while both `numpy.vecdot` and `numpy.vecmat` do take the conjugate for complex vectors on the left-hand side (which are taken to be the ones that are transposed, following the physics convention). ([gh-25675](https://github.com/numpy/numpy/pull/25675)) - `np.complexfloating[T, T]` can now also be written as `np.complexfloating[T]` ([gh-27420](https://github.com/numpy/numpy/pull/27420)) - UFuncs now support `__dict__` attribute and allow overriding `__doc__` (either directly or via `ufunc.__dict__["__doc__"]`). `__dict__` can be used to also override other properties, such as `__module__` or `__qualname__`. ([gh-27735](https://github.com/numpy/numpy/pull/27735)) - The "nbit" type parameter of `np.number` and its subtypes now defaults to `typing.Any`. This way, type-checkers will infer annotations such as `x: np.floating` as `x: np.floating[Any]`, even in strict mode. ([gh-27736](https://github.com/numpy/numpy/pull/27736)) #### Improvements - The `datetime64` and `timedelta64` hashes now correctly match the Pythons builtin `datetime` and `timedelta` ones. The hashes now evaluated equal even for equal values with different time units. ([gh-14622](https://github.com/numpy/numpy/pull/14622)) - Fixed a number of issues around promotion for string ufuncs with StringDType arguments. Mixing StringDType and the fixed-width DTypes using the string ufuncs should now generate much more uniform results. ([gh-27636](https://github.com/numpy/numpy/pull/27636)) - Improved support for empty `memmap`. Previously an empty `memmap` would fail unless a non-zero `offset` was set. Now a zero-size `memmap` is supported even if `offset=0`. To achieve this, if a `memmap` is mapped to an empty file that file is padded with a single byte. ([gh-27723](https://github.com/numpy/numpy/pull/27723)) - A regression has been fixed which allows F2PY users to expose variables to Python in modules with only assignments, and also fixes situations where multiple modules are present within a single source file. ([gh-27695](https://github.com/numpy/numpy/pull/27695)) #### Performance improvements and changes - Improved multithreaded scaling on the free-threaded build when many threads simultaneously call the same ufunc operations. ([gh-27896](https://github.com/numpy/numpy/pull/27896)) - NumPy now uses fast-on-failure attribute lookups for protocols. This can greatly reduce overheads of function calls or array creation especially with custom Python objects. The largest improvements will be seen on Python 3.12 or newer. ([gh-27119](https://github.com/numpy/numpy/pull/27119)) - OpenBLAS on x86\_64 and i686 is built with fewer kernels. Based on benchmarking, there are 5 clusters of performance around these kernels: `PRESCOTT NEHALEM SANDYBRIDGE HASWELL SKYLAKEX`. - OpenBLAS on windows is linked without quadmath, simplifying licensing - Due to a regression in OpenBLAS on windows, the performance improvements when using multiple threads for OpenBLAS 0.3.26 were reverted. ([gh-27147](https://github.com/numpy/numpy/pull/27147)) - NumPy now indicates hugepages also for large `np.zeros` allocations on linux. Thus should generally improve performance. ([gh-27808](https://github.com/numpy/numpy/pull/27808)) #### Changes - `numpy.fix` now won't perform casting to a floating data-type for integer and boolean data-type input arrays. ([gh-26766](https://github.com/numpy/numpy/pull/26766)) - The type annotations of `numpy.float64` and `numpy.complex128` now reflect that they are also subtypes of the built-in `float` and `complex` types, respectively. This update prevents static type-checkers from reporting errors in cases such as: ```python x: float = numpy.float64(6.28) # valid z: complex = numpy.complex128(-1j) # valid ``` ([gh-27334](https://github.com/numpy/numpy/pull/27334)) - The `repr` of arrays large enough to be summarized (i.e., where elements are replaced with `...`) now includes the `shape` of the array, similar to what already was the case for arrays with zero size and non-obvious shape. With this change, the shape is always given when it cannot be inferred from the values. Note that while written as `shape=...`, this argument cannot actually be passed in to the `np.array` constructor. If you encounter problems, e.g., due to failing doctests, you can use the print option `legacy=2.1` to get the old behaviour. ([gh-27482](https://github.com/numpy/numpy/pull/27482)) - Calling `__array_wrap__` directly on NumPy arrays or scalars now does the right thing when `return_scalar` is passed (Added in NumPy 2\). It is further safe now to call the scalar `__array_wrap__` on a non-scalar result. ([gh-27807](https://github.com/numpy/numpy/pull/27807)) - Bump the musllinux CI image and wheels to 1\_2 from 1\_1. This is because 1\_1 is [end of life](https://github.com/pypa/manylinux/issues/1629). ([gh-27088](https://github.com/numpy/numpy/pull/27088)) - The NEP 50 promotion state settings are now removed. They were always meant as temporary means for testing. A warning will be given if the environment variable is set to anything but `NPY_PROMOTION_STATE=weak` while `_set_promotion_state` and `_get_promotion_state` are removed. In case code used `_no_nep50_warning`, a `contextlib.nullcontext` could be used to replace it when not available. ([gh-27156](https://github.com/numpy/numpy/pull/27156)) #### Checksums ##### MD5 1b58b9e275e80364cd02dafb3f8daf35 numpy-2.2.0-cp310-cp310-macosx_10_9_x86_64.whl 7d3773d9b665b2d7cfec0cc0b760e69e numpy-2.2.0-cp310-cp310-macosx_11_0_arm64.whl 8ef666a462d3765ccfd5288f2fdf8e08 numpy-2.2.0-cp310-cp310-macosx_14_0_arm64.whl e4f9e3117075ffe53d7993253c774158 numpy-2.2.0-cp310-cp310-macosx_14_0_x86_64.whl fd60e410e5db402a2d0c0cb4dd23281d numpy-2.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 64c083cdbd91eb8670cd72b619f3a039 numpy-2.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl c3c75c2299f5163770e2e42f0dee5276 numpy-2.2.0-cp310-cp310-musllinux_1_2_aarch64.whl f6ab05f787221bbaf8fb4a9778af5467 numpy-2.2.0-cp310-cp310-musllinux_1_2_x86_64.whl 9b04caec124cadf90005ccdb662aad9f numpy-2.2.0-cp310-cp310-win32.whl 58934f23b6bc71fb1f984b688c1c6136 numpy-2.2.0-cp310-cp310-win_amd64.whl 769e53438154e53ba490fb4f816c083e numpy-2.2.0-cp311-cp311-macosx_10_9_x86_64.whl aa8060c013c04133b63780025eef4451 numpy-2.2.0-cp311-cp311-macosx_11_0_arm64.whl 72c10ef28a0ddffe6bf2495954ab82e0 numpy-2.2.0-cp311-cp311-macosx_14_0_arm64.whl 946b2510c86eb48e374e6987582c9b46 numpy-2.2.0-cp311-cp311-macosx_14_0_x86_64.whl 3f5203ae901ddd78cb298582eda07627 numpy-2.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl fd14624d40100a5eb0181bf393394448 numpy-2.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 7c86d51d89dbc5a6860d65641ea131ef numpy-2.2.0-cp311-cp311-musllinux_1_2_aarch64.whl 895c6588c74019b94fb3c740b9e9a0f5 numpy-2.2.0-cp311-cp311-musllinux_1_2_x86_64.whl 1468ae1cb59a43991b199cfa6f1e5679 numpy-2.2.0-cp311-cp311-win32.whl 48a3792698a81917320b91a30c0bacf4 numpy-2.2.0-cp311-cp311-win_amd64.whl db4377351f167d82adc66b16965d11bd numpy-2.2.0-cp312-cp312-macosx_10_13_x86_64.whl 3f3978b5e480ed18d55b1799d9a534ff numpy-2.2.0-cp312-cp312-macosx_11_0_arm64.whl 584b4063eb66688b607f7e7bdca58011 numpy-2.2.0-cp312-cp312-macosx_14_0_arm64.whl dfacf4ee4842d845f5e12f912ebc2055 numpy-2.2.0-cp312-cp312-macosx_14_0_x86_64.whl 2f10d9bc44635078a6222ed50c9fd0f2 numpy-2.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl bb69665b4b68b7af82939132972e8261 numpy-2.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 92e9b03039ab737e6799dbd9d057fce2 numpy-2.2.0-cp312-cp312-musllinux_1_2_aarch64.whl a4198f53e3906394012ab88dffff4077 numpy-2.2.0-cp312-cp312-musllinux_1_2_x86_64.whl f9cb2f38ae8272ab5eb4b209c59be45f numpy-2.2.0-cp312-cp312-win32.whl 6ffe9e1abf69bb8c4ee2e913b1badfde numpy-2.2.0-cp312-cp312-win_amd64.whl 330838b6e06481341b35f8d4b6b50bbb numpy-2.2.0-cp313-cp313-macosx_10_13_x86_64.whl 4fb63be6d2b92acfba0c2eaedce82e06 numpy-2.2.0-cp313-cp313-macosx_11_0_arm64.whl e4086f43f9ce29b5adf939e1b5150f03 numpy-2.2.0-cp313-cp313-macosx_14_0_arm64.whl ba74e1f7142954127fb2aef544a6b05e numpy-2.2.0-cp313-cp313-macosx_14_0_x86_64.whl 83f51806139d5adc70a2e309d0300ad1 numpy-2.2.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl bf9af9abb1e30521b3491f0748ba6199 numpy-2.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 4d30c57bd7103b36a4bf7a4a9e25e10d numpy-2.2.0-cp313-cp313-musllinux_1_2_aarch64.whl 5b12557dde538f99fd87d1682638a212 numpy-2.2.0-cp313-cp313-musllinux_1_2_x86_64.whl ee7689d2ecbcbd7c883f69099bd41892 numpy-2.2.0-cp313-cp313-win32.whl 370a2b14681c6dc4af8596f62d96bb20 numpy-2.2.0-cp313-cp313-win_amd64.whl e6fd32fb42fd89c7659e799d65c19557 numpy-2.2.0-cp313-cp313t-macosx_10_13_x86_64.whl 8e9b0579f2e22f38f57399ab18d6e651 numpy-2.2.0-cp313-cp313t-macosx_11_0_arm64.whl 71a7ee75208a633a8c36d4ed5b551c33 numpy-2.2.0-cp313-cp313t-macosx_14_0_arm64.whl 3d76dfe8c2e26dc42b97fdf086ce1fa5 numpy-2.2.0-cp313-cp313t-macosx_14_0_x86_64.whl b70ea00b40fb7d1b5d84868d8a073afb numpy-2.2.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl a6bc7090a4e2b1e9deabd0671c691129 numpy-2.2.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 9789193a075e8d494851fe7955a23af7 numpy-2.2.0-cp313-cp313t-musllinux_1_2_aarch64.whl 8c199d25bd806f737950428232b0dfa5 numpy-2.2.0-cp313-cp313t-musllinux_1_2_x86_64.whl 1f566cfe4880ca30a591a828634da429 numpy-2.2.0-cp313-cp313t-win32.whl eb9ea9f8fba78e7ae5b1415de1ee5c2c numpy-2.2.0-cp313-cp313t-win_amd64.whl 9fbe2640c73e4f391019db5af6e854f5 numpy-2.2.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl fc89986fda7ba19c7c50712f1fc1e342 numpy-2.2.0-pp310-pypy310_pp73-macosx_14_0_x86_64.whl d76c5769a3fdfb9e25b3c1a951bd021f numpy-2.2.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl c138d726fee19ec6ba85eaa2ba9a3390 numpy-2.2.0-pp310-pypy310_pp73-win_amd64.whl 81a58d5fd26fe983162dc3cea2989b7a numpy-2.2.0.tar.gz ##### SHA256 1e25507d85da11ff5066269d0bd25d06e0a0f2e908415534f3e603d2a78e4ffa numpy-2.2.0-cp310-cp310-macosx_10_9_x86_64.whl a62eb442011776e4036af5c8b1a00b706c5bc02dc15eb5344b0c750428c94219 numpy-2.2.0-cp310-cp310-macosx_11_0_arm64.whl b606b1aaf802e6468c2608c65ff7ece53eae1a6874b3765f69b8ceb20c5fa78e numpy-2.2.0-cp310-cp310-macosx_14_0_arm64.whl 36b2b43146f646642b425dd2027730f99bac962618ec2052932157e213a040e9 numpy-2.2.0-cp310-cp310-macosx_14_0_x86_64.whl 7fe8f3583e0607ad4e43a954e35c1748b553bfe9fdac8635c02058023277d1b3 numpy-2.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 122fd2fcfafdefc889c64ad99c228d5a1f9692c3a83f56c292618a59aa60ae83 numpy-2.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 3f2f5cddeaa4424a0a118924b988746db6ffa8565e5829b1841a8a3bd73eb59a numpy-2.2.0-cp310-cp310-musllinux_1_2_aarch64.whl 7fe4bb0695fe986a9e4deec3b6857003b4cfe5c5e4aac0b95f6a658c14635e31 numpy-2.2.0-cp310-cp310-musllinux_1_2_x86_64.whl b30042fe92dbd79f1ba7f6898fada10bdaad1847c44f2dff9a16147e00a93661 numpy-2.2.0-cp310-cp310-win32.whl 54dc1d6d66f8d37843ed281773c7174f03bf7ad826523f73435deb88ba60d2d4 numpy-2.2.0-cp310-cp310-win_amd64.whl 9874bc2ff574c40ab7a5cbb7464bf9b045d617e36754a7bc93f933d52bd9ffc6 numpy-2.2.0-cp311-cp311-macosx_10_9_x86_64.whl 0da8495970f6b101ddd0c38ace92edea30e7e12b9a926b57f5fabb1ecc25bb90 numpy-2.2.0-cp311-cp311-macosx_11_0_arm64.whl 0557eebc699c1c34cccdd8c3778c9294e8196df27d713706895edc6f57d29608 numpy-2.2.0-cp311-cp311-macosx_14_0_arm64.whl 3579eaeb5e07f3ded59298ce22b65f877a86ba8e9fe701f5576c99bb17c283da numpy-2.2.0-cp311-cp311-macosx_14_0_x86_64.whl 40deb10198bbaa531509aad0cd2f9fadb26c8b94070831e2208e7df543562b74 numpy-2.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl c2aed8fcf8abc3020d6a9ccb31dbc9e7d7819c56a348cc88fd44be269b37427e numpy-2.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl a222d764352c773aa5ebde02dd84dba3279c81c6db2e482d62a3fa54e5ece69b numpy-2.2.0-cp311-cp311-musllinux_1_2_aarch64.whl 4e58666988605e251d42c2818c7d3d8991555381be26399303053b58a5bbf30d numpy-2.2.0-cp311-cp311-musllinux_1_2_x86_64.whl 4723a50e1523e1de4fccd1b9a6dcea750c2102461e9a02b2ac55ffeae09a4410 numpy-2.2.0-cp311-cp311-win32.whl 16757cf28621e43e252c560d25b15f18a2f11da94fea344bf26c599b9cf54b73 numpy-2.2.0-cp311-cp311-win_amd64.whl cff210198bb4cae3f3c100444c5eaa573a823f05c253e7188e1362a5555235b3 numpy-2.2.0-cp312-cp312-macosx_10_13_x86_64.whl 58b92a5828bd4d9aa0952492b7de803135038de47343b2aa3cc23f3b71a3dc4e numpy-2.2.0-cp312-cp312-macosx_11_0_arm64.whl ebe5e59545401fbb1b24da76f006ab19734ae71e703cdb4a8b347e84a0cece67 numpy-2.2.0-cp312-cp312-macosx_14_0_arm64.whl e2b8cd48a9942ed3f85b95ca4105c45758438c7ed28fff1e4ce3e57c3b589d8e numpy-2.2.0-cp312-cp312-macosx_14_0_x86_64.whl 57fcc997ffc0bef234b8875a54d4058afa92b0b0c4223fc1f62f24b3b5e86038 numpy-2.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 85ad7d11b309bd132d74397fcf2920933c9d1dc865487128f5c03d580f2c3d03 numpy-2.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl cb24cca1968b21355cc6f3da1a20cd1cebd8a023e3c5b09b432444617949085a numpy-2.2.0-cp312-cp312-musllinux_1_2_aarch64.whl 0798b138c291d792f8ea40fe3768610f3c7dd2574389e37c3f26573757c8f7ef numpy-2.2.0-cp312-cp312-musllinux_1_2_x86_64.whl afe8fb968743d40435c3827632fd36c5fbde633b0423da7692e426529b1759b1 numpy-2.2.0-cp312-cp312-win32.whl 3a4199f519e57d517ebd48cb76b36c82da0360781c6a0353e64c0cac30ecaad3 numpy-2.2.0-cp312-cp312-win_amd64.whl f8c8b141ef9699ae777c6278b52c706b653bf15d135d302754f6b2e90eb30367 numpy-2.2.0-cp313-cp313-macosx_10_13_x86_64.whl 0f0986e917aca18f7a567b812ef7ca9391288e2acb7a4308aa9d265bd724bdae numpy-2.2.0-cp313-cp313-macosx_11_0_arm64.whl 1c92113619f7b272838b8d6702a7f8ebe5edea0df48166c47929611d0b4dea69 numpy-2.2.0-cp313-cp313-macosx_14_0_arm64.whl 5a145e956b374e72ad1dff82779177d4a3c62bc8248f41b80cb5122e68f22d13 numpy-2.2.0-cp313-cp313-macosx_14_0_x86_64.whl 18142b497d70a34b01642b9feabb70156311b326fdddd875a9981f34a369b671 numpy-2.2.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl a7d41d1612c1a82b64697e894b75db6758d4f21c3ec069d841e60ebe54b5b571 numpy-2.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl a98f6f20465e7618c83252c02041517bd2f7ea29be5378f09667a8f654a5918d numpy-2.2.0-cp313-cp313-musllinux_1_2_aarch64.whl e09d40edfdb4e260cb1567d8ae770ccf3b8b7e9f0d9b5c2a9992696b30ce2742 numpy-2.2.0-cp313-cp313-musllinux_1_2_x86_64.whl 3905a5fffcc23e597ee4d9fb3fcd209bd658c352657548db7316e810ca80458e numpy-2.2.0-cp313-cp313-win32.whl a184288538e6ad699cbe6b24859206e38ce5fba28f3bcfa51c90d0502c1582b2 numpy-2.2.0-cp313-cp313-win_amd64.whl 7832f9e8eb00be32f15fdfb9a981d6955ea9adc8574c521d48710171b6c55e95 numpy-2.2.0-cp313-cp313t-macosx_10_13_x86_64.whl f0dd071b95bbca244f4cb7f70b77d2ff3aaaba7fa16dc41f58d14854a6204e6c numpy-2.2.0-cp313-cp313t-macosx_11_0_arm64.whl b0b227dcff8cdc3efbce66d4e50891f04d0a387cce282fe1e66199146a6a8fca numpy-2.2.0-cp313-cp313t-macosx_14_0_arm64.whl 6ab153263a7c5ccaf6dfe7e53447b74f77789f28ecb278c3b5d49db7ece10d6d numpy-2.2.0-cp313-cp313t-macosx_14_0_x86_64.whl e500aba968a48e9019e42c0c199b7ec0696a97fa69037bea163b55398e390529 numpy-2.2.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 440cfb3db4c5029775803794f8638fbdbf71ec702caf32735f53b008e1eaece3 numpy-2.2.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl a55dc7a7f0b6198b07ec0cd445fbb98b05234e8b00c5ac4874a63372ba98d4ab numpy-2.2.0-cp313-cp313t-musllinux_1_2_aarch64.whl 4bddbaa30d78c86329b26bd6aaaea06b1e47444da99eddac7bf1e2fab717bd72 numpy-2.2.0-cp313-cp313t-musllinux_1_2_x86_64.whl 30bf971c12e4365153afb31fc73f441d4da157153f3400b82db32d04de1e4066 numpy-2.2.0-cp313-cp313t-win32.whl d35717333b39d1b6bb8433fa758a55f1081543de527171543a2b710551d40881 numpy-2.2.0-cp313-cp313t-win_amd64.whl e12c6c1ce84628c52d6367863773f7c8c8241be554e8b79686e91a43f1733773 numpy-2.2.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl b6207dc8fb3c8cb5668e885cef9ec7f70189bec4e276f0ff70d5aa078d32c88e numpy-2.2.0-pp310-pypy310_pp73-macosx_14_0_x86_64.whl a50aeff71d0f97b6450d33940c7181b08be1441c6c193e678211bff11aa725e7 numpy-2.2.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl df12a1f99b99f569a7c2ae59aa2d31724e8d835fc7f33e14f4792e3071d11221 numpy-2.2.0-pp310-pypy310_pp73-win_amd64.whl 140dd80ff8981a583a60980be1a655068f8adebf7a45a06a6858c873fcdcd4a0 numpy-2.2.0.tar.gz </details> --- ### Configuration 📅 **Schedule**: Branch creation - At any time (no schedule defined), Automerge - At any time (no schedule defined). 🚦 **Automerge**: Enabled. ♻ **Rebasing**: Whenever PR is behind base branch, or you tick the rebase/retry checkbox. 🔕 **Ignore**: Close this PR and you won't be reminded about this update again. --- - [ ] <!-- rebase-check -->If you want to rebase/retry this PR, check this box --- This PR has been generated by [Renovate Bot](https://github.com/renovatebot/renovate). <!--renovate-debug:eyJjcmVhdGVkSW5WZXIiOiIzOS4zMS40IiwidXBkYXRlZEluVmVyIjoiMzkuMzEuNCIsInRhcmdldEJyYW5jaCI6Im1haW4iLCJsYWJlbHMiOltdfQ==-->
renovate_bot added 1 commit 2025-01-11 08:47:21 -08:00
Update dependency numpy to v2.2.1
All checks were successful
ci/woodpecker/pr/lint Pipeline was successful
ci/woodpecker/pr/vulnerability-scan Pipeline was successful
ci/woodpecker/pull_request_closed/lint Pipeline was successful
ci/woodpecker/pull_request_closed/vulnerability-scan Pipeline was successful
00325a84a0
renovate_bot scheduled this pull request to auto merge when all checks succeed 2025-01-11 08:47:21 -08:00
renovate_bot merged commit f1538da3a1 into main 2025-01-11 08:49:10 -08:00
Sign in to join this conversation.
No reviewers
No labels
No milestone
No project
No assignees
1 participant
Notifications
Due date
The due date is invalid or out of range. Please use the format "yyyy-mm-dd".

No due date set.

Dependencies

No dependencies set.

Reference: buckbanzai/seattlecitylight-mastodon-bot#72
No description provided.