Update dependency numpy to v2.3.1 #106

Merged
renovate_bot merged 1 commit from renovate/numpy-2.x into main 2025-07-05 21:20:27 -07:00
Collaborator

This PR contains the following updates:

Package Change Age Confidence
numpy (changelog) ==2.3.0 -> ==2.3.1 age confidence

Release Notes

numpy/numpy (numpy)

v2.3.1: (Jun 21, 2025)

Compare Source

NumPy 2.3.1 Release Notes

The NumPy 2.3.1 release is a patch release with several bug fixes,
annotation improvements, and better support for OpenBSD. Highlights are:

  • Fix bug in matmul for non-contiguous out kwarg parameter
  • Fix for Accelerate runtime warnings on M4 hardware
  • Fix new in NumPy 2.3.0 np.vectorize casting errors
  • Improved support of cpu features for FreeBSD and OpenBSD

This release supports Python versions 3.11-3.13, Python 3.14 will be
supported when it is released.

Contributors

A total of 9 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Brad Smith +
  • Charles Harris
  • Developer-Ecosystem-Engineering
  • François Rozet
  • Joren Hammudoglu
  • Matti Picus
  • Mugundan Selvanayagam
  • Nathan Goldbaum
  • Sebastian Berg

Pull requests merged

A total of 12 pull requests were merged for this release.

  • #​29140: MAINT: Prepare 2.3.x for further development
  • #​29191: BUG: fix matmul with transposed out arg (#​29179)
  • #​29192: TYP: Backport typing fixes and improvements.
  • #​29205: BUG: Revert np.vectorize casting to legacy behavior (#​29196)
  • #​29222: TYP: Backport typing fixes
  • #​29233: BUG: avoid negating unsigned integers in resize implementation...
  • #​29234: TST: Fix test that uses uninitialized memory (#​29232)
  • #​29235: BUG: Address interaction between SME and FPSR (#​29223)
  • #​29237: BUG: Enforce integer limitation in concatenate (#​29231)
  • #​29238: CI: Add support for building NumPy with LLVM for Win-ARM64
  • #​29241: ENH: Detect CPU features on OpenBSD ARM and PowerPC64
  • #​29242: ENH: Detect CPU features on FreeBSD / OpenBSD RISC-V64.

Checksums

MD5
c353ac75ea083594a6cb674b5f943d83  numpy-2.3.1-cp311-cp311-macosx_10_9_x86_64.whl
fdb5454e372d399cf570868ea7e2b192  numpy-2.3.1-cp311-cp311-macosx_11_0_arm64.whl
dc0f17823bb1826519d6974c2b95fa90  numpy-2.3.1-cp311-cp311-macosx_14_0_arm64.whl
7e3118fe383af697a8868ba191b9eac0  numpy-2.3.1-cp311-cp311-macosx_14_0_x86_64.whl
705aafad1250aa3e41502c5710a26ed5  numpy-2.3.1-cp311-cp311-manylinux_2_28_aarch64.whl
003d6268344577b804205098e11cdaa0  numpy-2.3.1-cp311-cp311-manylinux_2_28_x86_64.whl
7d0c0fd11c573c510a25dd7513e4ae0a  numpy-2.3.1-cp311-cp311-musllinux_1_2_aarch64.whl
d99f993ef05966ead99df736df18b521  numpy-2.3.1-cp311-cp311-musllinux_1_2_x86_64.whl
96933cac225fb8b60a9cc2c0efa14d36  numpy-2.3.1-cp311-cp311-win32.whl
f777712419f3dd586ac294ddce84b274  numpy-2.3.1-cp311-cp311-win_amd64.whl
1fe2615669de5c271a48b99356fa3528  numpy-2.3.1-cp311-cp311-win_arm64.whl
fccca48846d41d38966cc75395787f79  numpy-2.3.1-cp312-cp312-macosx_10_13_x86_64.whl
fa389e78db43f3c2841ce127c1205422  numpy-2.3.1-cp312-cp312-macosx_11_0_arm64.whl
2554944d786abd284db4a699d4edfe1e  numpy-2.3.1-cp312-cp312-macosx_14_0_arm64.whl
7fec491834803a8ffa3765ef3d03cea5  numpy-2.3.1-cp312-cp312-macosx_14_0_x86_64.whl
7c2d8b4412f12b9b02e98349fb5cd760  numpy-2.3.1-cp312-cp312-manylinux_2_28_aarch64.whl
94dcc636a2f2478666d820e21fc91682  numpy-2.3.1-cp312-cp312-manylinux_2_28_x86_64.whl
404128939d89d1ea26be105fb03b5028  numpy-2.3.1-cp312-cp312-musllinux_1_2_aarch64.whl
e89d8d460060e8315c3ba68b2b649db0  numpy-2.3.1-cp312-cp312-musllinux_1_2_x86_64.whl
a767bd10267ad6baef9655fb08db3fd3  numpy-2.3.1-cp312-cp312-win32.whl
f753b957fcb7f06f043cf9c6114f294c  numpy-2.3.1-cp312-cp312-win_amd64.whl
58ffa7c69587f9bf8f6025794fec7f63  numpy-2.3.1-cp312-cp312-win_arm64.whl
22a2a9a568dd0866b288ad8bd8bb3e90  numpy-2.3.1-cp313-cp313-macosx_10_13_x86_64.whl
5e1593fcc8bb3447e995622f2dca017b  numpy-2.3.1-cp313-cp313-macosx_11_0_arm64.whl
894d56072db9358e0096538710a1a8ce  numpy-2.3.1-cp313-cp313-macosx_14_0_arm64.whl
593cb311f5170cbcfcefb587cdcc70bb  numpy-2.3.1-cp313-cp313-macosx_14_0_x86_64.whl
22935447e75acda4075c57b332c0236a  numpy-2.3.1-cp313-cp313-manylinux_2_28_aarch64.whl
5aa2040f947204e15e95ec87461a7e91  numpy-2.3.1-cp313-cp313-manylinux_2_28_x86_64.whl
6516337f0347974fada21a23a818be64  numpy-2.3.1-cp313-cp313-musllinux_1_2_aarch64.whl
ec956eb37b874b1ec52d6ffccda6ef65  numpy-2.3.1-cp313-cp313-musllinux_1_2_x86_64.whl
0aaed62cb1bae9c1b1a44d1a4eda2db7  numpy-2.3.1-cp313-cp313-win32.whl
57829996fc12f649547f0258443bbb20  numpy-2.3.1-cp313-cp313-win_amd64.whl
a0d0dd68bbf0ab378142b2daff0a8e06  numpy-2.3.1-cp313-cp313-win_arm64.whl
b22dc66970a8017e4d0ce83ef8c938af  numpy-2.3.1-cp313-cp313t-macosx_10_13_x86_64.whl
93c17afb38cf8fd876ca2bd9ea7e9612  numpy-2.3.1-cp313-cp313t-macosx_11_0_arm64.whl
283064dabb434f3dbc1a5e2514b9cb29  numpy-2.3.1-cp313-cp313t-macosx_14_0_arm64.whl
5b8c778033c98b4a0ce6e5bfc7625f05  numpy-2.3.1-cp313-cp313t-macosx_14_0_x86_64.whl
2340bd78962f194bcdbee6531d954acc  numpy-2.3.1-cp313-cp313t-manylinux_2_28_aarch64.whl
43a92ad37dc68d719bdeeeb65b3f4d2f  numpy-2.3.1-cp313-cp313t-manylinux_2_28_x86_64.whl
eb110c4aa0d73558187397ddfba179ad  numpy-2.3.1-cp313-cp313t-musllinux_1_2_aarch64.whl
1f7f0076411ed4afa9c4553eb06564cb  numpy-2.3.1-cp313-cp313t-musllinux_1_2_x86_64.whl
30f30dde6f806070b2164e48a632a350  numpy-2.3.1-cp313-cp313t-win32.whl
2375e2f2a5b75c5f5c908af6bb85d639  numpy-2.3.1-cp313-cp313t-win_amd64.whl
b421530a87bb8e9e3d4dc34c75d5d953  numpy-2.3.1-cp313-cp313t-win_arm64.whl
b1bc3cbf9cd407964b2bb25dfe86ca3d  numpy-2.3.1-pp311-pypy311_pp73-macosx_10_15_x86_64.whl
4c2e234eb4f346f362d6e6c620fa7a56  numpy-2.3.1-pp311-pypy311_pp73-macosx_14_0_arm64.whl
98ec3c19a365d0ae926113bb349e323b  numpy-2.3.1-pp311-pypy311_pp73-macosx_14_0_x86_64.whl
e0c7bcd526cde46489d5a8f12e06cc77  numpy-2.3.1-pp311-pypy311_pp73-manylinux_2_28_aarch64.whl
41f535aa1f1acaf3d8a32a462a4cd4c8  numpy-2.3.1-pp311-pypy311_pp73-manylinux_2_28_x86_64.whl
2abf906a6688c98693045cbbc655d5b7  numpy-2.3.1-pp311-pypy311_pp73-win_amd64.whl
886559a4c541298b37245e389ce8bf10  numpy-2.3.1.tar.gz
SHA256
6ea9e48336a402551f52cd8f593343699003d2353daa4b72ce8d34f66b722070  numpy-2.3.1-cp311-cp311-macosx_10_9_x86_64.whl
5ccb7336eaf0e77c1635b232c141846493a588ec9ea777a7c24d7166bb8533ae  numpy-2.3.1-cp311-cp311-macosx_11_0_arm64.whl
0bb3a4a61e1d327e035275d2a993c96fa786e4913aa089843e6a2d9dd205c66a  numpy-2.3.1-cp311-cp311-macosx_14_0_arm64.whl
e344eb79dab01f1e838ebb67aab09965fb271d6da6b00adda26328ac27d4a66e  numpy-2.3.1-cp311-cp311-macosx_14_0_x86_64.whl
467db865b392168ceb1ef1ffa6f5a86e62468c43e0cfb4ab6da667ede10e58db  numpy-2.3.1-cp311-cp311-manylinux_2_28_aarch64.whl
afed2ce4a84f6b0fc6c1ce734ff368cbf5a5e24e8954a338f3bdffa0718adffb  numpy-2.3.1-cp311-cp311-manylinux_2_28_x86_64.whl
0025048b3c1557a20bc80d06fdeb8cc7fc193721484cca82b2cfa072fec71a93  numpy-2.3.1-cp311-cp311-musllinux_1_2_aarch64.whl
a5ee121b60aa509679b682819c602579e1df14a5b07fe95671c8849aad8f2115  numpy-2.3.1-cp311-cp311-musllinux_1_2_x86_64.whl
a8b740f5579ae4585831b3cf0e3b0425c667274f82a484866d2adf9570539369  numpy-2.3.1-cp311-cp311-win32.whl
d4580adadc53311b163444f877e0789f1c8861e2698f6b2a4ca852fda154f3ff  numpy-2.3.1-cp311-cp311-win_amd64.whl
ec0bdafa906f95adc9a0c6f26a4871fa753f25caaa0e032578a30457bff0af6a  numpy-2.3.1-cp311-cp311-win_arm64.whl
2959d8f268f3d8ee402b04a9ec4bb7604555aeacf78b360dc4ec27f1d508177d  numpy-2.3.1-cp312-cp312-macosx_10_13_x86_64.whl
762e0c0c6b56bdedfef9a8e1d4538556438288c4276901ea008ae44091954e29  numpy-2.3.1-cp312-cp312-macosx_11_0_arm64.whl
867ef172a0976aaa1f1d1b63cf2090de8b636a7674607d514505fb7276ab08fc  numpy-2.3.1-cp312-cp312-macosx_14_0_arm64.whl
4e602e1b8682c2b833af89ba641ad4176053aaa50f5cacda1a27004352dde943  numpy-2.3.1-cp312-cp312-macosx_14_0_x86_64.whl
8e333040d069eba1652fb08962ec5b76af7f2c7bce1df7e1418c8055cf776f25  numpy-2.3.1-cp312-cp312-manylinux_2_28_aarch64.whl
e7cbf5a5eafd8d230a3ce356d892512185230e4781a361229bd902ff403bc660  numpy-2.3.1-cp312-cp312-manylinux_2_28_x86_64.whl
5f1b8f26d1086835f442286c1d9b64bb3974b0b1e41bb105358fd07d20872952  numpy-2.3.1-cp312-cp312-musllinux_1_2_aarch64.whl
ee8340cb48c9b7a5899d1149eece41ca535513a9698098edbade2a8e7a84da77  numpy-2.3.1-cp312-cp312-musllinux_1_2_x86_64.whl
e772dda20a6002ef7061713dc1e2585bc1b534e7909b2030b5a46dae8ff077ab  numpy-2.3.1-cp312-cp312-win32.whl
cfecc7822543abdea6de08758091da655ea2210b8ffa1faf116b940693d3df76  numpy-2.3.1-cp312-cp312-win_amd64.whl
7be91b2239af2658653c5bb6f1b8bccafaf08226a258caf78ce44710a0160d30  numpy-2.3.1-cp312-cp312-win_arm64.whl
25a1992b0a3fdcdaec9f552ef10d8103186f5397ab45e2d25f8ac51b1a6b97e8  numpy-2.3.1-cp313-cp313-macosx_10_13_x86_64.whl
7dea630156d39b02a63c18f508f85010230409db5b2927ba59c8ba4ab3e8272e  numpy-2.3.1-cp313-cp313-macosx_11_0_arm64.whl
bada6058dd886061f10ea15f230ccf7dfff40572e99fef440a4a857c8728c9c0  numpy-2.3.1-cp313-cp313-macosx_14_0_arm64.whl
a894f3816eb17b29e4783e5873f92faf55b710c2519e5c351767c51f79d8526d  numpy-2.3.1-cp313-cp313-macosx_14_0_x86_64.whl
18703df6c4a4fee55fd3d6e5a253d01c5d33a295409b03fda0c86b3ca2ff41a1  numpy-2.3.1-cp313-cp313-manylinux_2_28_aarch64.whl
5902660491bd7a48b2ec16c23ccb9124b8abfd9583c5fdfa123fe6b421e03de1  numpy-2.3.1-cp313-cp313-manylinux_2_28_x86_64.whl
36890eb9e9d2081137bd78d29050ba63b8dab95dff7912eadf1185e80074b2a0  numpy-2.3.1-cp313-cp313-musllinux_1_2_aarch64.whl
a780033466159c2270531e2b8ac063704592a0bc62ec4a1b991c7c40705eb0e8  numpy-2.3.1-cp313-cp313-musllinux_1_2_x86_64.whl
39bff12c076812595c3a306f22bfe49919c5513aa1e0e70fac756a0be7c2a2b8  numpy-2.3.1-cp313-cp313-win32.whl
8d5ee6eec45f08ce507a6570e06f2f879b374a552087a4179ea7838edbcbfa42  numpy-2.3.1-cp313-cp313-win_amd64.whl
0c4d9e0a8368db90f93bd192bfa771ace63137c3488d198ee21dfb8e7771916e  numpy-2.3.1-cp313-cp313-win_arm64.whl
b0b5397374f32ec0649dd98c652a1798192042e715df918c20672c62fb52d4b8  numpy-2.3.1-cp313-cp313t-macosx_10_13_x86_64.whl
c5bdf2015ccfcee8253fb8be695516ac4457c743473a43290fd36eba6a1777eb  numpy-2.3.1-cp313-cp313t-macosx_11_0_arm64.whl
d70f20df7f08b90a2062c1f07737dd340adccf2068d0f1b9b3d56e2038979fee  numpy-2.3.1-cp313-cp313t-macosx_14_0_arm64.whl
2fb86b7e58f9ac50e1e9dd1290154107e47d1eef23a0ae9145ded06ea606f992  numpy-2.3.1-cp313-cp313t-macosx_14_0_x86_64.whl
23ab05b2d241f76cb883ce8b9a93a680752fbfcbd51c50eff0b88b979e471d8c  numpy-2.3.1-cp313-cp313t-manylinux_2_28_aarch64.whl
ce2ce9e5de4703a673e705183f64fd5da5bf36e7beddcb63a25ee2286e71ca48  numpy-2.3.1-cp313-cp313t-manylinux_2_28_x86_64.whl
c4913079974eeb5c16ccfd2b1f09354b8fed7e0d6f2cab933104a09a6419b1ee  numpy-2.3.1-cp313-cp313t-musllinux_1_2_aarch64.whl
010ce9b4f00d5c036053ca684c77441f2f2c934fd23bee058b4d6f196efd8280  numpy-2.3.1-cp313-cp313t-musllinux_1_2_x86_64.whl
6269b9edfe32912584ec496d91b00b6d34282ca1d07eb10e82dfc780907d6c2e  numpy-2.3.1-cp313-cp313t-win32.whl
2a809637460e88a113e186e87f228d74ae2852a2e0c44de275263376f17b5bdc  numpy-2.3.1-cp313-cp313t-win_amd64.whl
eccb9a159db9aed60800187bc47a6d3451553f0e1b08b068d8b277ddfbb9b244  numpy-2.3.1-cp313-cp313t-win_arm64.whl
ad506d4b09e684394c42c966ec1527f6ebc25da7f4da4b1b056606ffe446b8a3  numpy-2.3.1-pp311-pypy311_pp73-macosx_10_15_x86_64.whl
ebb8603d45bc86bbd5edb0d63e52c5fd9e7945d3a503b77e486bd88dde67a19b  numpy-2.3.1-pp311-pypy311_pp73-macosx_14_0_arm64.whl
15aa4c392ac396e2ad3d0a2680c0f0dee420f9fed14eef09bdb9450ee6dcb7b7  numpy-2.3.1-pp311-pypy311_pp73-macosx_14_0_x86_64.whl
c6e0bf9d1a2f50d2b65a7cf56db37c095af17b59f6c132396f7c6d5dd76484df  numpy-2.3.1-pp311-pypy311_pp73-manylinux_2_28_aarch64.whl
eabd7e8740d494ce2b4ea0ff05afa1b7b291e978c0ae075487c51e8bd93c0c68  numpy-2.3.1-pp311-pypy311_pp73-manylinux_2_28_x86_64.whl
e610832418a2bc09d974cc9fecebfa51e9532d6190223bc5ef6a7402ebf3b5cb  numpy-2.3.1-pp311-pypy311_pp73-win_amd64.whl
1ec9ae20a4226da374362cca3c62cd753faf2f951440b0e3b98e93c235441d2b  numpy-2.3.1.tar.gz

Configuration

📅 Schedule: Branch creation - At any time (no schedule defined), Automerge - At any time (no schedule defined).

🚦 Automerge: Enabled.

Rebasing: Whenever PR becomes conflicted, or you tick the rebase/retry checkbox.

🔕 Ignore: Close this PR and you won't be reminded about this update again.


  • If you want to rebase/retry this PR, check this box

This PR has been generated by Renovate Bot.

This PR contains the following updates: | Package | Change | Age | Confidence | |---|---|---|---| | [numpy](https://github.com/numpy/numpy) ([changelog](https://numpy.org/doc/stable/release)) | `==2.3.0` -> `==2.3.1` | [![age](https://developer.mend.io/api/mc/badges/age/pypi/numpy/2.3.1?slim=true)](https://docs.renovatebot.com/merge-confidence/) | [![confidence](https://developer.mend.io/api/mc/badges/confidence/pypi/numpy/2.3.0/2.3.1?slim=true)](https://docs.renovatebot.com/merge-confidence/) | --- ### Release Notes <details> <summary>numpy/numpy (numpy)</summary> ### [`v2.3.1`](https://github.com/numpy/numpy/releases/tag/v2.3.1): (Jun 21, 2025) [Compare Source](https://github.com/numpy/numpy/compare/v2.3.0...v2.3.1) ### NumPy 2.3.1 Release Notes The NumPy 2.3.1 release is a patch release with several bug fixes, annotation improvements, and better support for OpenBSD. Highlights are: - Fix bug in `matmul` for non-contiguous out kwarg parameter - Fix for Accelerate runtime warnings on M4 hardware - Fix new in NumPy 2.3.0 `np.vectorize` casting errors - Improved support of cpu features for FreeBSD and OpenBSD This release supports Python versions 3.11-3.13, Python 3.14 will be supported when it is released. #### Contributors A total of 9 people contributed to this release. People with a "+" by their names contributed a patch for the first time. - Brad Smith + - Charles Harris - Developer-Ecosystem-Engineering - François Rozet - Joren Hammudoglu - Matti Picus - Mugundan Selvanayagam - Nathan Goldbaum - Sebastian Berg #### Pull requests merged A total of 12 pull requests were merged for this release. - [#&#8203;29140](https://github.com/numpy/numpy/pull/29140): MAINT: Prepare 2.3.x for further development - [#&#8203;29191](https://github.com/numpy/numpy/pull/29191): BUG: fix matmul with transposed out arg ([#&#8203;29179](https://github.com/numpy/numpy/issues/29179)) - [#&#8203;29192](https://github.com/numpy/numpy/pull/29192): TYP: Backport typing fixes and improvements. - [#&#8203;29205](https://github.com/numpy/numpy/pull/29205): BUG: Revert `np.vectorize` casting to legacy behavior ([#&#8203;29196](https://github.com/numpy/numpy/issues/29196)) - [#&#8203;29222](https://github.com/numpy/numpy/pull/29222): TYP: Backport typing fixes - [#&#8203;29233](https://github.com/numpy/numpy/pull/29233): BUG: avoid negating unsigned integers in resize implementation... - [#&#8203;29234](https://github.com/numpy/numpy/pull/29234): TST: Fix test that uses uninitialized memory ([#&#8203;29232](https://github.com/numpy/numpy/issues/29232)) - [#&#8203;29235](https://github.com/numpy/numpy/pull/29235): BUG: Address interaction between SME and FPSR ([#&#8203;29223](https://github.com/numpy/numpy/issues/29223)) - [#&#8203;29237](https://github.com/numpy/numpy/pull/29237): BUG: Enforce integer limitation in concatenate ([#&#8203;29231](https://github.com/numpy/numpy/issues/29231)) - [#&#8203;29238](https://github.com/numpy/numpy/pull/29238): CI: Add support for building NumPy with LLVM for Win-ARM64 - [#&#8203;29241](https://github.com/numpy/numpy/pull/29241): ENH: Detect CPU features on OpenBSD ARM and PowerPC64 - [#&#8203;29242](https://github.com/numpy/numpy/pull/29242): ENH: Detect CPU features on FreeBSD / OpenBSD RISC-V64. #### Checksums ##### MD5 ``` c353ac75ea083594a6cb674b5f943d83 numpy-2.3.1-cp311-cp311-macosx_10_9_x86_64.whl fdb5454e372d399cf570868ea7e2b192 numpy-2.3.1-cp311-cp311-macosx_11_0_arm64.whl dc0f17823bb1826519d6974c2b95fa90 numpy-2.3.1-cp311-cp311-macosx_14_0_arm64.whl 7e3118fe383af697a8868ba191b9eac0 numpy-2.3.1-cp311-cp311-macosx_14_0_x86_64.whl 705aafad1250aa3e41502c5710a26ed5 numpy-2.3.1-cp311-cp311-manylinux_2_28_aarch64.whl 003d6268344577b804205098e11cdaa0 numpy-2.3.1-cp311-cp311-manylinux_2_28_x86_64.whl 7d0c0fd11c573c510a25dd7513e4ae0a numpy-2.3.1-cp311-cp311-musllinux_1_2_aarch64.whl d99f993ef05966ead99df736df18b521 numpy-2.3.1-cp311-cp311-musllinux_1_2_x86_64.whl 96933cac225fb8b60a9cc2c0efa14d36 numpy-2.3.1-cp311-cp311-win32.whl f777712419f3dd586ac294ddce84b274 numpy-2.3.1-cp311-cp311-win_amd64.whl 1fe2615669de5c271a48b99356fa3528 numpy-2.3.1-cp311-cp311-win_arm64.whl fccca48846d41d38966cc75395787f79 numpy-2.3.1-cp312-cp312-macosx_10_13_x86_64.whl fa389e78db43f3c2841ce127c1205422 numpy-2.3.1-cp312-cp312-macosx_11_0_arm64.whl 2554944d786abd284db4a699d4edfe1e numpy-2.3.1-cp312-cp312-macosx_14_0_arm64.whl 7fec491834803a8ffa3765ef3d03cea5 numpy-2.3.1-cp312-cp312-macosx_14_0_x86_64.whl 7c2d8b4412f12b9b02e98349fb5cd760 numpy-2.3.1-cp312-cp312-manylinux_2_28_aarch64.whl 94dcc636a2f2478666d820e21fc91682 numpy-2.3.1-cp312-cp312-manylinux_2_28_x86_64.whl 404128939d89d1ea26be105fb03b5028 numpy-2.3.1-cp312-cp312-musllinux_1_2_aarch64.whl e89d8d460060e8315c3ba68b2b649db0 numpy-2.3.1-cp312-cp312-musllinux_1_2_x86_64.whl a767bd10267ad6baef9655fb08db3fd3 numpy-2.3.1-cp312-cp312-win32.whl f753b957fcb7f06f043cf9c6114f294c numpy-2.3.1-cp312-cp312-win_amd64.whl 58ffa7c69587f9bf8f6025794fec7f63 numpy-2.3.1-cp312-cp312-win_arm64.whl 22a2a9a568dd0866b288ad8bd8bb3e90 numpy-2.3.1-cp313-cp313-macosx_10_13_x86_64.whl 5e1593fcc8bb3447e995622f2dca017b numpy-2.3.1-cp313-cp313-macosx_11_0_arm64.whl 894d56072db9358e0096538710a1a8ce numpy-2.3.1-cp313-cp313-macosx_14_0_arm64.whl 593cb311f5170cbcfcefb587cdcc70bb numpy-2.3.1-cp313-cp313-macosx_14_0_x86_64.whl 22935447e75acda4075c57b332c0236a numpy-2.3.1-cp313-cp313-manylinux_2_28_aarch64.whl 5aa2040f947204e15e95ec87461a7e91 numpy-2.3.1-cp313-cp313-manylinux_2_28_x86_64.whl 6516337f0347974fada21a23a818be64 numpy-2.3.1-cp313-cp313-musllinux_1_2_aarch64.whl ec956eb37b874b1ec52d6ffccda6ef65 numpy-2.3.1-cp313-cp313-musllinux_1_2_x86_64.whl 0aaed62cb1bae9c1b1a44d1a4eda2db7 numpy-2.3.1-cp313-cp313-win32.whl 57829996fc12f649547f0258443bbb20 numpy-2.3.1-cp313-cp313-win_amd64.whl a0d0dd68bbf0ab378142b2daff0a8e06 numpy-2.3.1-cp313-cp313-win_arm64.whl b22dc66970a8017e4d0ce83ef8c938af numpy-2.3.1-cp313-cp313t-macosx_10_13_x86_64.whl 93c17afb38cf8fd876ca2bd9ea7e9612 numpy-2.3.1-cp313-cp313t-macosx_11_0_arm64.whl 283064dabb434f3dbc1a5e2514b9cb29 numpy-2.3.1-cp313-cp313t-macosx_14_0_arm64.whl 5b8c778033c98b4a0ce6e5bfc7625f05 numpy-2.3.1-cp313-cp313t-macosx_14_0_x86_64.whl 2340bd78962f194bcdbee6531d954acc numpy-2.3.1-cp313-cp313t-manylinux_2_28_aarch64.whl 43a92ad37dc68d719bdeeeb65b3f4d2f numpy-2.3.1-cp313-cp313t-manylinux_2_28_x86_64.whl eb110c4aa0d73558187397ddfba179ad numpy-2.3.1-cp313-cp313t-musllinux_1_2_aarch64.whl 1f7f0076411ed4afa9c4553eb06564cb numpy-2.3.1-cp313-cp313t-musllinux_1_2_x86_64.whl 30f30dde6f806070b2164e48a632a350 numpy-2.3.1-cp313-cp313t-win32.whl 2375e2f2a5b75c5f5c908af6bb85d639 numpy-2.3.1-cp313-cp313t-win_amd64.whl b421530a87bb8e9e3d4dc34c75d5d953 numpy-2.3.1-cp313-cp313t-win_arm64.whl b1bc3cbf9cd407964b2bb25dfe86ca3d numpy-2.3.1-pp311-pypy311_pp73-macosx_10_15_x86_64.whl 4c2e234eb4f346f362d6e6c620fa7a56 numpy-2.3.1-pp311-pypy311_pp73-macosx_14_0_arm64.whl 98ec3c19a365d0ae926113bb349e323b numpy-2.3.1-pp311-pypy311_pp73-macosx_14_0_x86_64.whl e0c7bcd526cde46489d5a8f12e06cc77 numpy-2.3.1-pp311-pypy311_pp73-manylinux_2_28_aarch64.whl 41f535aa1f1acaf3d8a32a462a4cd4c8 numpy-2.3.1-pp311-pypy311_pp73-manylinux_2_28_x86_64.whl 2abf906a6688c98693045cbbc655d5b7 numpy-2.3.1-pp311-pypy311_pp73-win_amd64.whl 886559a4c541298b37245e389ce8bf10 numpy-2.3.1.tar.gz ``` ##### SHA256 ``` 6ea9e48336a402551f52cd8f593343699003d2353daa4b72ce8d34f66b722070 numpy-2.3.1-cp311-cp311-macosx_10_9_x86_64.whl 5ccb7336eaf0e77c1635b232c141846493a588ec9ea777a7c24d7166bb8533ae numpy-2.3.1-cp311-cp311-macosx_11_0_arm64.whl 0bb3a4a61e1d327e035275d2a993c96fa786e4913aa089843e6a2d9dd205c66a numpy-2.3.1-cp311-cp311-macosx_14_0_arm64.whl e344eb79dab01f1e838ebb67aab09965fb271d6da6b00adda26328ac27d4a66e numpy-2.3.1-cp311-cp311-macosx_14_0_x86_64.whl 467db865b392168ceb1ef1ffa6f5a86e62468c43e0cfb4ab6da667ede10e58db numpy-2.3.1-cp311-cp311-manylinux_2_28_aarch64.whl afed2ce4a84f6b0fc6c1ce734ff368cbf5a5e24e8954a338f3bdffa0718adffb numpy-2.3.1-cp311-cp311-manylinux_2_28_x86_64.whl 0025048b3c1557a20bc80d06fdeb8cc7fc193721484cca82b2cfa072fec71a93 numpy-2.3.1-cp311-cp311-musllinux_1_2_aarch64.whl a5ee121b60aa509679b682819c602579e1df14a5b07fe95671c8849aad8f2115 numpy-2.3.1-cp311-cp311-musllinux_1_2_x86_64.whl a8b740f5579ae4585831b3cf0e3b0425c667274f82a484866d2adf9570539369 numpy-2.3.1-cp311-cp311-win32.whl d4580adadc53311b163444f877e0789f1c8861e2698f6b2a4ca852fda154f3ff numpy-2.3.1-cp311-cp311-win_amd64.whl ec0bdafa906f95adc9a0c6f26a4871fa753f25caaa0e032578a30457bff0af6a numpy-2.3.1-cp311-cp311-win_arm64.whl 2959d8f268f3d8ee402b04a9ec4bb7604555aeacf78b360dc4ec27f1d508177d numpy-2.3.1-cp312-cp312-macosx_10_13_x86_64.whl 762e0c0c6b56bdedfef9a8e1d4538556438288c4276901ea008ae44091954e29 numpy-2.3.1-cp312-cp312-macosx_11_0_arm64.whl 867ef172a0976aaa1f1d1b63cf2090de8b636a7674607d514505fb7276ab08fc numpy-2.3.1-cp312-cp312-macosx_14_0_arm64.whl 4e602e1b8682c2b833af89ba641ad4176053aaa50f5cacda1a27004352dde943 numpy-2.3.1-cp312-cp312-macosx_14_0_x86_64.whl 8e333040d069eba1652fb08962ec5b76af7f2c7bce1df7e1418c8055cf776f25 numpy-2.3.1-cp312-cp312-manylinux_2_28_aarch64.whl e7cbf5a5eafd8d230a3ce356d892512185230e4781a361229bd902ff403bc660 numpy-2.3.1-cp312-cp312-manylinux_2_28_x86_64.whl 5f1b8f26d1086835f442286c1d9b64bb3974b0b1e41bb105358fd07d20872952 numpy-2.3.1-cp312-cp312-musllinux_1_2_aarch64.whl ee8340cb48c9b7a5899d1149eece41ca535513a9698098edbade2a8e7a84da77 numpy-2.3.1-cp312-cp312-musllinux_1_2_x86_64.whl e772dda20a6002ef7061713dc1e2585bc1b534e7909b2030b5a46dae8ff077ab numpy-2.3.1-cp312-cp312-win32.whl cfecc7822543abdea6de08758091da655ea2210b8ffa1faf116b940693d3df76 numpy-2.3.1-cp312-cp312-win_amd64.whl 7be91b2239af2658653c5bb6f1b8bccafaf08226a258caf78ce44710a0160d30 numpy-2.3.1-cp312-cp312-win_arm64.whl 25a1992b0a3fdcdaec9f552ef10d8103186f5397ab45e2d25f8ac51b1a6b97e8 numpy-2.3.1-cp313-cp313-macosx_10_13_x86_64.whl 7dea630156d39b02a63c18f508f85010230409db5b2927ba59c8ba4ab3e8272e numpy-2.3.1-cp313-cp313-macosx_11_0_arm64.whl bada6058dd886061f10ea15f230ccf7dfff40572e99fef440a4a857c8728c9c0 numpy-2.3.1-cp313-cp313-macosx_14_0_arm64.whl a894f3816eb17b29e4783e5873f92faf55b710c2519e5c351767c51f79d8526d numpy-2.3.1-cp313-cp313-macosx_14_0_x86_64.whl 18703df6c4a4fee55fd3d6e5a253d01c5d33a295409b03fda0c86b3ca2ff41a1 numpy-2.3.1-cp313-cp313-manylinux_2_28_aarch64.whl 5902660491bd7a48b2ec16c23ccb9124b8abfd9583c5fdfa123fe6b421e03de1 numpy-2.3.1-cp313-cp313-manylinux_2_28_x86_64.whl 36890eb9e9d2081137bd78d29050ba63b8dab95dff7912eadf1185e80074b2a0 numpy-2.3.1-cp313-cp313-musllinux_1_2_aarch64.whl a780033466159c2270531e2b8ac063704592a0bc62ec4a1b991c7c40705eb0e8 numpy-2.3.1-cp313-cp313-musllinux_1_2_x86_64.whl 39bff12c076812595c3a306f22bfe49919c5513aa1e0e70fac756a0be7c2a2b8 numpy-2.3.1-cp313-cp313-win32.whl 8d5ee6eec45f08ce507a6570e06f2f879b374a552087a4179ea7838edbcbfa42 numpy-2.3.1-cp313-cp313-win_amd64.whl 0c4d9e0a8368db90f93bd192bfa771ace63137c3488d198ee21dfb8e7771916e numpy-2.3.1-cp313-cp313-win_arm64.whl b0b5397374f32ec0649dd98c652a1798192042e715df918c20672c62fb52d4b8 numpy-2.3.1-cp313-cp313t-macosx_10_13_x86_64.whl c5bdf2015ccfcee8253fb8be695516ac4457c743473a43290fd36eba6a1777eb numpy-2.3.1-cp313-cp313t-macosx_11_0_arm64.whl d70f20df7f08b90a2062c1f07737dd340adccf2068d0f1b9b3d56e2038979fee numpy-2.3.1-cp313-cp313t-macosx_14_0_arm64.whl 2fb86b7e58f9ac50e1e9dd1290154107e47d1eef23a0ae9145ded06ea606f992 numpy-2.3.1-cp313-cp313t-macosx_14_0_x86_64.whl 23ab05b2d241f76cb883ce8b9a93a680752fbfcbd51c50eff0b88b979e471d8c numpy-2.3.1-cp313-cp313t-manylinux_2_28_aarch64.whl ce2ce9e5de4703a673e705183f64fd5da5bf36e7beddcb63a25ee2286e71ca48 numpy-2.3.1-cp313-cp313t-manylinux_2_28_x86_64.whl c4913079974eeb5c16ccfd2b1f09354b8fed7e0d6f2cab933104a09a6419b1ee numpy-2.3.1-cp313-cp313t-musllinux_1_2_aarch64.whl 010ce9b4f00d5c036053ca684c77441f2f2c934fd23bee058b4d6f196efd8280 numpy-2.3.1-cp313-cp313t-musllinux_1_2_x86_64.whl 6269b9edfe32912584ec496d91b00b6d34282ca1d07eb10e82dfc780907d6c2e numpy-2.3.1-cp313-cp313t-win32.whl 2a809637460e88a113e186e87f228d74ae2852a2e0c44de275263376f17b5bdc numpy-2.3.1-cp313-cp313t-win_amd64.whl eccb9a159db9aed60800187bc47a6d3451553f0e1b08b068d8b277ddfbb9b244 numpy-2.3.1-cp313-cp313t-win_arm64.whl ad506d4b09e684394c42c966ec1527f6ebc25da7f4da4b1b056606ffe446b8a3 numpy-2.3.1-pp311-pypy311_pp73-macosx_10_15_x86_64.whl ebb8603d45bc86bbd5edb0d63e52c5fd9e7945d3a503b77e486bd88dde67a19b numpy-2.3.1-pp311-pypy311_pp73-macosx_14_0_arm64.whl 15aa4c392ac396e2ad3d0a2680c0f0dee420f9fed14eef09bdb9450ee6dcb7b7 numpy-2.3.1-pp311-pypy311_pp73-macosx_14_0_x86_64.whl c6e0bf9d1a2f50d2b65a7cf56db37c095af17b59f6c132396f7c6d5dd76484df numpy-2.3.1-pp311-pypy311_pp73-manylinux_2_28_aarch64.whl eabd7e8740d494ce2b4ea0ff05afa1b7b291e978c0ae075487c51e8bd93c0c68 numpy-2.3.1-pp311-pypy311_pp73-manylinux_2_28_x86_64.whl e610832418a2bc09d974cc9fecebfa51e9532d6190223bc5ef6a7402ebf3b5cb numpy-2.3.1-pp311-pypy311_pp73-win_amd64.whl 1ec9ae20a4226da374362cca3c62cd753faf2f951440b0e3b98e93c235441d2b numpy-2.3.1.tar.gz ``` </details> --- ### Configuration 📅 **Schedule**: Branch creation - At any time (no schedule defined), Automerge - At any time (no schedule defined). 🚦 **Automerge**: Enabled. ♻ **Rebasing**: Whenever PR becomes conflicted, or you tick the rebase/retry checkbox. 🔕 **Ignore**: Close this PR and you won't be reminded about this update again. --- - [ ] <!-- rebase-check -->If you want to rebase/retry this PR, check this box --- This PR has been generated by [Renovate Bot](https://github.com/renovatebot/renovate). <!--renovate-debug:eyJjcmVhdGVkSW5WZXIiOiI0MC41NS4xIiwidXBkYXRlZEluVmVyIjoiNDEuMjEuMyIsInRhcmdldEJyYW5jaCI6Im1haW4iLCJsYWJlbHMiOltdfQ==-->
Update dependency numpy to v2.3.1
Some checks failed
ci/woodpecker/pr/lint Pipeline failed
ci/woodpecker/pr/vulnerability-scan Pipeline failed
e6492cde95
renovate_bot scheduled this pull request to auto merge when all checks succeed 2025-06-21 05:00:36 -07:00
renovate_bot force-pushed renovate/numpy-2.x from e6492cde95 to c35e9a94e1 2025-07-05 21:09:59 -07:00 Compare
renovate_bot force-pushed renovate/numpy-2.x from c35e9a94e1 to 332751a188 2025-07-05 21:19:18 -07:00 Compare
renovate_bot deleted branch renovate/numpy-2.x 2025-07-05 21:20:27 -07:00
Sign in to join this conversation.
No reviewers
No labels
No milestone
No project
No assignees
1 participant
Notifications
Due date
The due date is invalid or out of range. Please use the format "yyyy-mm-dd".

No due date set.

Dependencies

No dependencies set.

Reference: buckbanzai/seattlecitylight-mastodon-bot#106
No description provided.